Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of New Yogyakarta International Airport (NYIA) in Temon sub-district is aimed at improving the progress of the surrounding region, where the construction has an impact on the increase in built-up land of 572.38 hectare (2013–2017) and 268.67 hectare (2017–2023) which is potentially a decrease in the environmental quality index. The purpose of the research was to analyze changes in the environmental quality index Risk Screening Environmental Indicators (RSEI) of 2013, 2017 and 2024 around NYIA. The research designs used quantitative approaches with scoring approaches, while research methods used spectral transformation and Principal Component Analysis transformation. The research has limited the use of Landsat 8 image data as a primary data source with a spatial resolution of 30 meters, where the image has not yet been able to deliver the results of the research with a high degree of exhaustion. The originality of the research is the identification of changes in the environmental quality index that are correlated with changes in built-up land and vegetation coverage. The results of the study showed a decrease in the RSEI values, where high-level RSEIs decreased by about 295.17 hectare (2013–2017) and 1720.91 hectare (2017–2024), in addition there was an increase in the area of low-level RSEI by about 122.33 hectare (2013–2017) and 1898.79 hectare (2017–2024). The decline in RSEI in the area study has been correlated with increased built-up land and decreased vegetation area, with built-up land increasing by 572.38 hectare (2013–2017) and 269.97 hectare (2017–2024), besides decreasing vegetation areas by 137.82 hectare (2013–2017), and 97.34 hectare (2017–2024). The study concluded that there was a decrease in the environmental quality index, where increased built-up land and decreased vegetation area were influential factors. This research opens up further research opportunities to predict the environmental quality index with the cellular automata model.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
143--160
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
- Geography Departement, Faculty of Social Sciences and Political Science, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
autor
- Environmental Science Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
autor
- Geography Departement, Faculty of Social Sciences and Political Science, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
autor
- Geography Departement, Faculty of Social Sciences and Political Science, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
Bibliografia
- 1. Alganci, U., 2019. Dynamic land cover mapping of urbanized cities with landsat 8 multi-temporal images: Comparative evaluation of classification algorithms and dimension reduction methods. ISPRS Int. J. GeoInformation 8. https://doi.org/10.3390/ijgi8030139
- 2. Amalia, A.V., Fariz, T.R., Lutfiananda, F., Ihsan, H.M., Atunnisa, R., Jabbar, A., 2024. Comparison of SwatBased Ecohydrological Modeling in the Rawa Pening Catchment Area, Indonesia. J. Pendidik. IPA Indones. 13, 1–11. https://doi.org/10.15294/jpii.v13i1.45277
- 3. Anthony, T., Shohan, A.A.A., Oludare, A., Alsulamy, S., Kafy, A. Al, Khedher, K.M., 2024. Spatial analysis of land cover changes for detecting environmental degradation and promoting sustainability. Kuwait J. Sci. 51, 100197. https://doi.org/10.1016/j.kjs.2024.100197
- 4. Bidgoli, R.D., Koohbanani, H., Keshavarzi, A., Kumar, V., 2020. Measurement and zonation of soil surface moisture in arid and semi-arid regions using Landsat 8 images. Arab. J. Geosci. 13. https://doi.org/10.1007/s12517-020-05837-2
- 5. Chen, C., Wang, L., Yang, G., Sun, W., Song, Y., 2023. Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago. Remote Sens. 15. https://doi.org/10.3390/rs15164072
- 6. Chen, Z., Chen, J., Zhou, C., Li, Y., 2022. An ecological assessment process based on integrated remote sensing model: A case from KaikukangWalagan District, Greater Khingan Range, China. Ecol. Inform. 70, 101699. https://doi.org/10.1016/j.ecoinf.2022.101699
- 7. Dzakiyah, I.F., Saraswati, R., 2020. Drought area of agricultural land using Tasseled Cap Transformation (TCT) method in Ciampel Subdistrict Karawang Regency. E3S Web Conf. 211, 1–10. https://doi.org/10.1051/e3sconf/202021102005
- 8. Fariz, T.R., Faniza, V., 2023. Comparison of builtup land indices for building density mapping in urban environments. AIP Conf. Proc. 2683, 30006. https://doi.org/10.1063/5.0125378
- 9. Gong, C., Lyu, F., Wang, Y., 2023. Spatiotemporal change and drivers of ecosystem quality in the Loess Plateau based on RSEI: A case study of Shanxi, China. Ecol. Indic. 155, 111060. https://doi.org/10.1016/j.ecolind.2023.111060
- 10. Hu, X., Xu, H., 2018. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 89, 11–21. https://doi.org/10.1016/j.ecolind.2018.02.006
- 11. Kadarisman, M., 2019. Policy Implementations of New Yogyakarta International Airport Development. DLSU Bus. Econ. Rev. 28, 113–128. https://doi.org/10.5281/zenodo.3270542
- 12. Lei, X., Liu, H., Li, S., Luo, Q., Cheng, S., Hu, G., Wang, X., Bai, W., 2024. Coupling coordination analysis of urbanization and ecological environment in Chengdu-Chongqing urban agglomeration. Ecol. Indic. 161, 111969. https://doi.org/10.1016/j.ecolind.2024.111969
- 13. Li, N., Guo, Y., Wang, L., Wang, Q., Yan, D., Zhao, S., Lei, T., 2024. Evaluation and quantitative characterization for the ecological environment impact of open pit mining on vegetation destruction from landsat time series: A case study of Wulishan limestone mine. Ecol. Indic. 158, 111371. https://doi.org/10.1016/j.ecolind.2023.111371
- 14. Li, Y., Tian, H., Zhang, J., Lu, S., Xie, Z., Shen, W., Zheng, Z., Li, M., Rong, P., Qin, Y., 2023. Detection of spatiotemporal changes in ecological quality in the Chinese mainland: Trends and attributes. Sci. Total Environ. 884, 163791. https://doi.org/10.1016/j.scitotenv.2023.163791
- 15. Liu, Y., Xu, W., Hong, Z., Wang, L., Ou, G., Lu, N., Dai, Q., 2023. Integrating three-dimensional greenness into RSEI improved the scientificity of ecological environment quality assessment for forest. Ecol. Indic. 156, 111092. https://doi.org/10.1016/j.ecolind.2023.111092
- 16. Liu, Y., Zhang, J., 2024. Spatio-temporal evolutionary analysis of surface ecological quality in Pingshuo open-cast mine area, China. Environ. Sci. Pollut. Res. 31, 7312–7329. https://doi.org/10.1007/s11356-023-31650-x
- 17. Majidi, A.N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., Kluck, J., 2019. Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement. Sustainability. https://doi.org/10.3390/su11226361
- 18. Mallick, S.K., 2024. Urban built-up area footprint (UBAF): A novel method of urban bio-capacity and ecological sensitivity assessment. J. Clean. Prod. 440, 140846. https://doi.org/10.1016/j.jclepro.2024.140846
- 19. Sanjoto, T.B., 2020. Land Cover Change Analysis To Sedimentation Rate of Rawapening Lake. Int. J. Geomate 18, 294–301. https://doi.org/10.21660/2020.70.icgeo50
- 20. Sidiq, W.A.B.N., Fariz, T.R., Saputro, P.A., Sholeh, M., 2024. Built-Up Development Prediction Based on Cellular Automata Modelling Around New Yogyakarta International Airport. Ecol. Eng. Environ. Technol. 25, 238–250. https://doi.org/10.12912/27197050/175138
- 21. Sidiq, W.A.B.N., Sanjoto, T.B., Martuti, N.K.T., 2022. Land Use Change Analysis to Springs Conditions in Gunungpati Sub-District, Semarang City. Geosfera Indones. 7, 150. https://doi.org/10.19184/geosi.v7i2.32085
- 22. Silva, D.J.F., Silva, T.R.B.F., de Oliveira, M.L., de Oliveira, G., Mishra, M., Santos, C.A.G., Silva, R.M. da, dos Santos, C.A.C., 2024. Analysis of surface radiation fluxes and environmental variables over Caatinga vegetation with different densities. J. Arid Environ. 222. https://doi.org/10.1016/j.jaridenv.2024.105163
- 23. Spadoni, G.L., Cavalli, A., Congedo, L., Munafò, M., 2020. Analysis of Normalized Difference Vegetation Index (NDVI) multi-temporal series for the production of forest cartography. Remote Sens. Appl. Soc. Environ. 20. https://doi.org/10.1016/j.rsase.2020.100419
- 24. Syahza, A., Bakce, D., Irianti, M., 2019. Improved Peatlands Potential for Agricultural Purposes to Support Sustainable Development in Bengkalis District, Riau Province, Indonesia. J. Phys. Conf. Ser. 1351. https://doi.org/10.1088/1742-6596/1351/1/012114
- 25. Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O’Regan, N., Rozenberg, J., Watkins, G., Hall, J.W., 2019. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331. https://doi.org/10.1038/s41893-019-0256-8
- 26. Ticehurst, C., Teng, J., Sengupta, A., 2022. Development of a Multi-Index Method Based on Landsat Reflectance Data to Map Open Water in a Complex Environment. Remote Sens. 14. https://doi.org/10.3390/rs14051158
- 27. Utami, W., Nurcahyanto, D., Sudibyanung, S., 2021. Economic Impacts of Land Acquisition for Yogyakarta International Airport Project. Mimb. J. Sos. dan Pembang. 37, 150–160. https://doi.org/10.29313/mimbar.v37i1.6955
- 28. Xu, H., Li, C., Shi, T., 2022. Is the z-score standardized RSEI suitable for time-series ecological change detection? Comment on Zheng et al. Sci. Total Environ. 853, 1–5. https://doi.org/10.1016/j.scitotenv.2022.158582
- 29. Xu, H., Wang, Y., Guan, H., Shi, T., Hu, X., 2019. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. https://doi.org/10.3390/rs11202345
- 30. Xu, W., Song, J., Long, Y., Mao, R., Tang, B., Li, B., 2023. Analysis and simulation of the driving mechanism and ecological effects of land cover change in the Weihe River basin, China. J. Environ. Manage. 344, 118320. https://doi.org/10.1016/j.jenvman.2023.118320
- 31. Yan, X., Li, Jing, Yang, D., Li, Jiwei, Ma, T., Su, Y., Shao, J., Zhang, R., 2022. A Random Forest Algorithm for Landsat Image Chromatic Aberration Restoration Based on GEE Cloud Platform—A Case Study of Yucatán Peninsula, Mexico. Remote Sens. 14. https://doi.org/10.3390/rs14205154
- 32. Zamroni, A., Sugarbo, O., Trisnaning, P.T., Sagala, S.T., Putra, A.S., 2021. Geochemical approach for seawater intrusion assessment in the area around yogyakarta international airport, Indonesia. Iraqi Geol. J. 54, 1–11. https://doi.org/10.46717/igj.54.1F.1ms-2021-06-21
- 33. Zhang, Q., Zhang, Y., Yu, T., Zhong, D., 2024. Primary driving factors of ecological environment system change based on directed weighted network illustrating with the Three-River Headwaters Region. Sci. Total Environ. 916, 170055. https://doi.org/10.1016/j.scitotenv.2024.170055
- 34. Zhang, Z., Fan, Y., Jiao, Z., 2023. Wetland ecological index and assessment of spatial-temporal changes of wetland ecological integrity. Sci. Total Environ. 862, 160741. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160741
- 35. Zheng, Y., He, Y., Zhou, Q., Wang, H., 2022. Quantitative Evaluation of Urban Expansion using NPP-VIIRS Nighttime Light and Landsat Spectral Data. Sustain. Cities Soc. 76, 103338. https://doi.org/10.1016/j.scs.2021.103338
- 36. Zheng, Z., Wu, Z., Chen, Y., Guo, C., Marinello, F., 2022. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 814, 152595. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152595
- 37. Zhou, J., Liu, W., 2022. Monitoring and Evaluation of Eco-Environment Quality Based on Remote SensingBased Ecological Index (RSEI) in Taihu Lake Basin, China. Sustain. 14. https://doi.org/10.3390/su14095642
- 38. Zhu, X., Helmer, E.H., Gwenzi, D., Collin, M., Fleming, S., Tian, J., Marcano-Vega, H., MeléndezAckerman, E.J., Zimmerman, J.K., 2021. Characterization of dry-season phenology in tropical forests by reconstructing cloud-free landsat time series. Remote Sens. 13. https://doi.org/10.3390/rs13234736
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8968a725-5918-4bdd-9590-ebb529d3dc50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.