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INTRODUCTION

The development of public infrastructure is 
aimed at improving services to the community so 
that it can improve the well-being and economy 
of the region (Syahza et al., 2019; Thacker et al., 
2019). Infrastructure development activities are 
always undertaken in different sectors of life in a 
uniform manner in order to increase the prosper-
ity of the population. Infrastructure development 

will have an impact on the improvement of other 
buildings as needed, thereby affecting the in-
crease in built-up land that could potentially lead 
to a decrease in environmental quality (Sanjoto, 
2020; Sidiq et al., 2022). The development of 
public infrastructure that could potentially have 
an impact on the surrounding area is NYIA in Ku-
lon Progo district, Daerah Istimewa Yogyakarta 
(DIY) Province. NYIA is a development of the 
previous airport which is difficult to develop due 
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to land constraints which causes less optimal vis-
its of foreign tourists. Besides, the development 
of NYIA also aims to boost the economy of the 
region which has relatively slow development 
compared to other districts and cities in the DIY 
Province (Kadarisman, 2019; Utami et al., 2021).

The land cover change around NYIA could 
potentially lead to environmental problems, such 
as declining biodiversity indices, potential drou-
ghts due to reduced vegetation coverage, food 
imbalances due to agricultural land conversion, 
loss of natural landscape and soil erosion, and 
deforestation of environmental balancing vege-
tation (Majidi et al., 2019; Zamroni et al., 2021). 
Growth of built-up land around NYIA has so far 
been observed rapidly, with the year 2013-2017 
increasing to 572.38 hectares and an increase 
of 268.67 hectares (2017–2023) such as hotels, 
commercial buildings, infrastructure and settle-
ments (Utami et al., 2021; Sidiq et al., 2024). 
Growth of built-up land has been impacted by a 
decrease in agricultural land of 418,07 hectares 
(2013–2017) and 153,57 hectares (2017–2023) 
(Utami et al., 2021; Sidiq et al., 2024). Deve-
lopment in the region is expected to continue to 
increase with the emergence of some open land 
that has been prepared for development. There-
fore, based on the data change of land cover, 
time series can potentially against a decrease of 
the environmental quality index, this is because 
most of the NYIA development area corresponds 
to vegetation and agricultural land that have a 
contribution to the quality of environment in the 
region. Further monitoring of the environmental 
quality index was carried out in 2013, 2017 and 
2024, where the selection of the year was based 
on the development of the NYIA at the research 
site, 2013 as the base year because at that time 
the discourse of development and development 
activities of NYIA did not appear, next year 
2017 was taken because in that year the con-
struction of NYIA started which had an impact 
on the increase of the built-up land, while the 
election of 2024 was taken to know the index of 
quality of environment exists, where already a 
lot of improvement of the built-up land is poten-
tially on the decrease in the environment quality 
index around NYIA. Monitoring of environmen-
tal quality indices can be leveraged using remote 
sensing technology with the RSEI method (Xu 
et al., 2019; Zheng et al., 2022).

The problem-solving approach in this 
study is through monitoring of environmental 

quality indices in time series (2013, 2017 and 
2024) around NYIA by utilizing remote sens-
ing technology through RSEI approach with 
parameters greenness index, humadity index, 
dryness index and heat index to obtain a model 
of change in environment quality at the re-
search site. The aim of this study was to com-
pile a time series environmental quality index 
model around NYIA that can be used as input 
in development planning and environmental 
management around the NYIA. The novelty of 
this research is the use of RSEI methods based 
on data raster method principal component 
analysis (PCA). The results of the research can 
be used as one of the controls of the regional 
planning policy in the coming years around 
NYIA so that the expected economic sector 
improvement does not affect the decline in en-
vironmental quality in the region.

METHODOLOGY

Research sites

The research area is located in the sub-district 
that borders directly with the Temon sub-district 
which is the NYIA site, where there are 7 sub-dis-
tricts that are the research site. The following picture 
shows a map of the location of the study (Fig. 1).

Data source

The satellite image data used in this study 
is Landsat 8 time series image from the Google 
Earth Engine (GEE) with the data set category 
is surface reflectance collection 2. This dataset 
contains atmospherically corrected surface re-
flectance and land surface temperature derived 
from the data produced by the Landsat 8 sen-
sors. The acquisition image consists of 2013, 
2017 and 2024; to avoid the impact of seasonal 
differences, the satellite image period chosen 
was the month of March-October which is the 
rainy season (Zhu et al., 2021). After the se-
lected time period, the next pre-processing was 
cloud and cloud shadow removal using the QA 
(pixel_qa) band bit mask technique, so that the 
satellite image used represented the condition 
of a time period (Yan et al., 2022), where it 
helps the mapping process in tropical regions 
that are covered by many clouds, such as Indo-
nesia (Amalia et al., 2024).
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Data processing

Risk screening environmental indicators pa-
rameters RSEI is the environmental quality index 
used in this study, which includes 4 parameters. 
These parameters are very close to the quality of 
the natural ecological environment namely green-
ness, humidity, dryness and heat (Hu and Xu, 
2018; Liu and Zhang, 2024). The representation 
and methods of calculation of each ecological 
factor used in RSEI are described as follows.

Greenness index

Vegetation is a very important factor in repre-
senting the quality of the ecological environment 
in a region (22). The greenness index is expressed 
by the normalized difference vegetations index 
(NDVI) which can represent the spread of density 
and vegetation coverage (Islam et al., 2021). The 
NDVI formula is defined as follows:
	 𝑁𝐷𝑉𝐼 = (𝜌𝑁𝐼 𝑅−𝜌𝑅)/(𝜌𝑁𝐼 𝑅+𝜌𝑅) (1)

ρNIR is the reflectance of the near-infrared 
band on remote sensing data, and ρR is the re-
flection of the infrared band upon remote sensor 
data. In Landsat 8 data, they relate to the fifth and 
fourth bands respectively.

Humidity index

Humidity index can represent vegetation and 
soil water levels. In this study, humidity param-
eters used the wetness index of tasseled cap trans-
formation (Chen et al., 2023). Wetness index can 
also be used to estimate environmental impacts, 
such as drought and flooded vegetation (Dzakiyah 

and Saraswati, 2020; Ticehurst et al., 2022). The 
formula used to calculate the wetness index with 
Landsat 8 images is as follows:= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(2)

Processing wetness index using several Land-
sat 8 image bands, including ρB, ρG, ρR, ρNIR, 
ρSWR1, and ρSWR2 are the reflectances of the 
blue, green, red, near-infrared, shortwave infrared 
1, and shortwave infrared 2 bands.

Dryness index

The high intensity of built-up land or imper-
vious surface and bare soil can have a negative 
impact on the ecological environment (Anthony 
et al., 2024). This can be represented by drying 
of soil which can be calculated by combining the 
index-based built-up index (IBI) and the normal-
ized bare soil index (SI) using the method the 
normalized difference soil index (NDBSI) (Zhou 
and Liu, 2022). This index uses many bands, in-
cluding NIR, SWIR1 and SWIR2 that are capable 
of discriminating impervious surfaces from other 
objects, as well as sensitive to soil moisture dy-
namics (Bidgoli et al., 2020; Fariz and Faniza, 
2023). The formula used by NDBSI is as follows:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(3)
IBI and SI are the index-based built-up index 

and normalized bare soil index. The specific formu-
las used to calculate these indices were as follows:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(4)

Figure 1. Research sites
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= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(5)

There are several bands used for NDBSI pro-
cessing, including: ρB, ρG, ρR, ρNIR, ρSWR1, and 
ρSWR2 are the reflectances of the blue, green, red, 
near-infrared, shortwave infrared 1, and shortwave 
infrared 2 bands.

Heat index

Heat index can be represented in land sur-
face temperature (LST), where LST in this study 
involves emissivity and in Celsius units. The cal-
culation of the land surface emissivity adopted 
the vegetation cover method and the fractional 
vegetation cover was calculated using the NDVI 
(Sekertekin and Bonafoni, 2020). The formula for 
calculating LST is as follows:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(6)

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(7)

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(8)

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(9)

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(10)
where: L is radians temperature, and Tb is the bright-

ness temperature; DN is the gray value of the 
data pixel, and gain and bias are the band gain 
value and bias values, respectively, which can 
be obtained using the image header; K1 and 
K2 are calibration parameters, which can be 
obtained by referring to the user manual. ε is 
the land surface emissivity, which was cal-
culated by applying a threshold to the NDVI; 
pv is the fractional vegetation cover; NDVI is 
the normalized difference vegetation index, 
and NDVImin is the minimum value of the 
NDVI, which represents the NDVI value of 
completely bare soil or areas with no vegeta-
tion cover. NDVImax is the maximum value 
of the NDVI, which represents the NDVI val-
ue of pure vegetation pixels; LST is the land 
surface temperature, and ρ = 1.438 × 10−2 
mK; λ is the center wavelength of the thermal 
infrared band, where: λTM = 11.435 μm and 
λTIR1 = 10.900 μm.

Risk screening environmental 
indicators processing

RSEI is built on the basis of principal compo-
nent analysis (PCA) transformation. All parame-
ters are represented in indices, such as NDVI, Wet-
ness, NDBSI and LST processed in PCA analysis. 

The specific formula used to calculate the RSEI
was as follows:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(11)
PCA is an image transformation that rotates the 

axis of the original feature space coordinate sys-
tem to a new orthogonal axis called principle axes 
by maximizing data variance (Alganci, 2019). Use 
of PCA to synthesize several indicators to avoid 
bias caused by subjective factors in the degrada-
tion process (Chen et al., 2023). However, before 
to the PCA process, all RSEI parameters (NDVI, 
Wet, NDBSI, LST) were normalized in intervals 
(0–1) (Li et al., 2023). The normalization process 
aims to harmonize the weight of each parameter, 
given that every parameter has a different range 
of values, this process uses the following formula:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(12)
where: NIi is the result of normalized processing 

of the index, and Ii, Imin, and Imax are the val-
ues of the ith pixel of the index, the mini-
mum value, and the maximum value.

On the basis of the PCA results, the first com-
ponent, PC1, integrates various ecological factors 
and contains information about some of the eco-
logical index values, so it can be used to estimate 
ecological environmental quality. The higher the 
PC1 value, the better the quality of the environ-
ment. However, PC1 results sometimes show re-
verse results, so the following calculations need to 
be done (Zheng et al., 2022):

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(13)

Furthermore, to facilitate further analysis, the end 
result of the RSEI is normalized so that it has a range 
(0–1) (Li et al., 2023). The closer the value to 1, the 
better the ecological condition, while the closer it is to 
the value of 0, the worse the ecologic condition (Fig. 
2) (Hu and Xu, 2018; Liu and Zhang, 2024). The for-
mula for normalizing RSEI is as follows:

= ( − )/( + ) (1)

= 0.1511 + 0.1972 + 0.3283 + 0.3407 –
– 0.7117 1 − 0.4559 2

(2)
= ( + )/2 (3)

= {2 1/( 1 + ) –
– [ /( + ) + /( 1 + )]}·

·{2 1/ ( 1 + ) +
+ [ /( + ) + /( 1 + )]}

(4)

= [( 1 + ) − ( + )]/
/[( 1 + )+( + )]

(5)

= × +
= 2/ln( 1/ 6 + 1) (7)

= [( − )/
/( − )]2

(8)
= 0.004 × + 0.986 (9)

= /[1 + (( )/ )ln( )] − 273.15 (10)
= ( , , , ) (11)
= ( − )/( − ) (12)

0 = 1−{RSEI} (13)
= ( 0− 0_min)/

/( 0_max− 0_min)
(14)

(14)

RESULT AND DISCUSSION

RSEI parameters processing results

The environmental quality index at the re-
search site is obtained from the results of the pro-
cessing of the RSEI time series in 2013, 2017 
and 2024 for monitoring the changes in the 
quality of the environment as an impact of the 
development of NYIA. The processing uses 4 
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parameters with processing the spectral transfor-
mation of Landsat 8 image data, including green-
ness index, humidity index, dryness index and 
heat index, from which each index can provide 
thematic information related to the environment 
quality at the study site. Here are the results of 
RSEI parameter processing with spectral trans-
formation of Landsat 8 time series image data.

Greenness index

The NDVI level of greenery in the study 
area is presented with a value of -1–1 for each 
pixel, where pixel values -1–0 are non-vegeta-
tion objects (water, soil and built-up), whereas 
pixel value 0–1 is vegetation, where the larger 
the value indicates the higher the level of veg-
etation density (Spadoni et al., 2020; Zhang et 
al., 2023). NDVI time series processing results 
showed an increase in the area of non-vege-
tation objects from 2013–2017 with an area 
of 1416.70 hectares and an increase of 329.83 
hectares (2017–2024). The increase in the object 
is largely due to the development of the NYIA 
which affects the increase in other built-up land 

around it, where increases in built-up land con-
verting vegetation and agricultural land influence 
the decline in RSEI values at the research site 
(Zhang et al., 2024). Further from the value of 
the NDVI time series shows there was a decrease 
in the area of low-density vegetation from 2013–
2017 with an area of 1758.80 hectares and the 
vegetation of moderate density from 2017–2024 
with a area of 721.61 hectares, where based on 
the type of objects of vegetation with low density 
– moderate are mixed gardens. On the basis of on 
the value of the NDVI, time series will influence 
the decrease in the RSEI value at the research site 
due to the increase in built-up land and decreased 
coverage and vegetation density at the study site.

The following Table 1 and Figure 3 shows 
the value and distribution of the spatial green-
ness index at the research site (Chen et al., 
2022; Silva et al., 2024).

Humidity index

The humidity index in the RSEI parameter 
is treated with a wetness index that indicates the 
level of water content in the soil and vegetation, 

Figure 2. Research flow chart

Table 1. NDVI time series processing results

No. NDVI value Vegetation density 
level

Area (hectares)

2013 2013–2017 2017 2017–2024 2024

1 -0.0783–0.0018 Non vegetation 103.01 +1416.70 1519.73 +329.83 1849.56

2 0.0019–0.2770 Low 10902.32 -1758.80 9143.48 +408.81 9552.29

3 0.2780–0.3521 Moderate 12367.74 +237.97 12605.71 -721.61 11884.10

4 0.3531–0.5136 High 14514.86 +104.15 14619.01 -17.03 14601.98

Total 37887.93 – 37887.93 – 37887.93
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a)

Figure 3. NDVI density level time series: (a) 2013, (b) 2017, (c) 2024

b)

c)
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where the higher value of the index indicates high 
water content so it has a low threat of drought (Xu 
et al., 2022). The result of the processing of the 
wetness index time series at the site of the study 
has a value interval of -1.093–0.532 for each 
pixel, where the larger the pixel value indicates 
a high level of humidity, and the lower the pixels 
value (minus) indicates the area is dry. The results 
of the wetness index processing at the research 
site in 2013, 2017 and 2024 showed that most of 
the area has high humidity with the largest area in 
2017 with an area of 16601.81 hectares. This is 
due to the area with high density vegetation cover 
in the Bagelen sub-district, Pengasih sub-district 
and Kokap sub-district resulting in a high wa-
ter content. The humidity level of the area from 
2013 to 2024 was relatively dynamic, with an 
area decrease of approximately 1864.69 hectares 
compared to the area with high moisture levels 
from 2017 to 2024, while areas with very low 
humidities increased by about 1043.70 hectares 
between 2017 and 2024 and areas with low levels 
increased to about 851.52 hectares.

The increase in areas with very low and low 
humidity levels from 2017–2024 at the research 
site may be due to the change in land cover from 
vegetation to built-up land that mostly occurs 
around NYIA, such as hotels, dining houses, su-
permarkets and other built-up land. On the basis 
of the value of the wetness index time series will 
influence the decrease of the RSEI value at the 
research site because there is an increase in areas 
with very low and low humidity levels (Xu et al., 
2022). The following Table 2 and Figure 4 show 
the value and distribution of the spatial wetness 
index at the research site.

Dryness index

The dryness index parameters were obtained 
from the processing of the normalized difference 
soil index (NDBSI) to provide information on 
the drought level at the research site. The level of 

drought is one of the parameters of environmen-
tal quality that relates to the availability of water 
in an area to meet the needs of living creatures. 
The result of the NDBSI time series processing 
showed a pixel value of 1.979–8.682 with a clas-
sification of very low-high, where the higher the 
value of the pixel represents the higher level of 
drought. On the basis of the results of the 2024 
NDBSI processing, most of the area has a low 
drought level with an area of 19377.41 hectares, 
then there is an area with a moderate drought rate 
with a area of 14213.17 hectares. The drought 
levels in the study area are mostly low and mod-
erate, where this is mostly due to the area that 
is widely used for agricultural land so requires 
a large supply of water resources, besides that 
most areas are high plains with close vegetation 
cover so that has a potential high water resourc-
es. In general, the drought rate in the area study 
from 2013–2024 is quite dynamic, where from 
2017–2024 there has been an increase in high 
drought area with an area of 2412.08 hectares, 
but the area with a low drought level has also ex-
perienced an increase of approximately 10786.30 
hectares. On the basis of NDBSI values, the time 
series will influence the increase in RSEI values 
at the research site because there is an increase 
in the areas with low drought levels at the study 
site (Liu et al., 2023). The following Table 3 and 
Figure 5 show the value and spatial distribution 
of the dryness index at the research site.

Heat index

Parameter heat index describes the condi-
tions of the surface temperature of the soil in the 
study area, where the higher surface tempera-
ture indicates the lower level of environmental 
quality. The phenomenon of rising surface tem-
perature will affect the increase of microclimate 
which causes environmental conditions to be-
come more uncomfortable. The heat index as the 
RSEI parameter is obtained from the land surface 

Table 2. Wetness index time series processing results

No. Wet index value Humidity level
Area (hectares)

2013 2013–2017 2017 2017–2024 2024

1 -1.093–(-0.389) Very low 3960.88 -2396.20 1564.68 +1043.70 2608.38

2 -0.390–(-0.247) Low 7648.45 -301.63 7346.82 +851.52 8198.34

3 -0.248–(-0.136) Moderate 11111.84 +1262.80 12374.61 -30.53 12344.08

4 -0.137–0.532 High 15166.76 +1435.10 16601.81 -1864.69 14737.13

Total 37887.93 – 37887.93 – 37887.93
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Figure 4. Wetness index time series: (a) 2013, (b) 2017, (c) 2024

a)

b)

c)
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Figure 5. Dryness index time series: (a) 2013, (b) 2017, (c) 2024

a)

b)

c)
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temperature (LST) processing results using the 
thermal band on the Landsat 8 image to produce 
the surface temperature value in celsius units at 
each pixel value. The LST time series process-
ing result has an interval value of 28.27–32.01 
°C, where for 2024 most areas have a moder-
ate LST value (30.478–30.944 °C) with an area 
of 15571.21 hectares, and a low LEST value 
(30.084–30.477 °C), with a area of 11949.25 
hectares. The increase in the area of high LST 
occurred in the 2013-2017 interval with an in-
crease of 544.47 hectares and increased again 
from 2017–2024 with a size of 452.02 hectares.

In addition, there has been an increase in the 
size of the medium LST area from 2017–2024 
to the area of 3515.02 hectares. However, there 
is a decrease in the area area of the LST very 
low from the year 2017–2024, about 1527.37 
hectares and low LST with the decreased area 
of about 2440.39 hectares. The time series data 
showed that there was an increase in LST from 
2013–2024 which affected the increase in the 
microclimate at the research site, where the 
increase of LST is due to the decrease in the 
vegetation area that turned into built-up land 
especially around NYIA (Xu et al., 2023). On 
the basis of the value of the LST time series 
will have an impact on the decline in the RSEI 
value at the study site because of the increased 
area with high LST. The following Table 4 and 
Figure 6 show the value and distribution of the 
spatial heat index at the study site.

RSEI change analysis

RSEI is processed using the PCA method 
using 4 parameters, including greenness index, 
humidity index, dryness index and heat index 
Landsat 8 time series image processing results 
in 2013, 2017 and 2024. The processing result 
of the time series can provide information about 
changes in the quality of the environment around 
NYIA, the processing output of RSEI has a 
value of 0–1 for each pixel of the image, where 
the higher the pixel value indicates that the lo-
cation has better environmental quality, whereas 
if pixel values are lower, then it shows that the 
environment quality is worse. On the basis of the 
results of the processing, RSEI showed most of 
the study area in 2024 has a high environmental 
quality index with an area of 10994.71 hectares, 
but the size of the area has decreased compared 
to 2017 with the area area of 12715.65 hectares 
and has a further decrease from 2013 with the 
surface area of 13010.79 hectares. 

On the basis of the spatial distribution of the 
area that suffered the decrease of the value of the 
index is mostly in the area of Temon sub-district 
that has land cover change from the develop-
ment of NYIA. The values of the RSEI time se-
ries from the year 2013–2024 showed there was 
a decline in the index of high quality in the study 
area, where the decline can be caused by various 
factors, including decreased vegetation area, in-
creased microclimate, reduced potential of water 

Table 3. NDBSI time series processing results

No. NDBSI value Drought level
Area (hectares)

2013 2013–2017 2017 2017–2024 2024

1 1.979–3.458 Very low 2792.90 -83.39 2709.51 -239.15 2470.36

2 3.459–4.038 Low 7461.71 +1129.40 8591.11 +10786.30 19377.41

3 4.039–4.418 Moderate 16992.33 +180.07 17172.4 -2959.23 14213.17

4 4.419–8.682 High 10640.99 -1226.1 9414.91 +2412.08 11826.99

Total 37887.93 – 37887.93 – 37887.93

Table 4. LST time series processing results

No. LST value LST level
Area (hectares)

2013 2013–2017 2017 2017–2024 2024

1 28.273–30.083 Very low 7808.35 +102.44 7911.29 -1527.37 6383.92

2 30.084–30.477 Low 14384.07 +5.57 14389.64 -2440.39 11949.25

3 30.478–30.944 Moderate 12708.67 -652.48 12056.19 +3515.02 15571.21

4 30.995–32.010 High 2986.34 +544.47 3530 +452.02 3983.55

Total 37887.93 – 37887.93 – 37887.93
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Figure 6. LST value time series: (a) 2013, (b) 2017, (c) 2024

a)

b)

c)
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resources and various other factors. Furthermore, 
f the results of processing RSEI time series also 
showed a wide increase in the areas with very low 
and low quality index, which from 2013–2017 in-
creased about 122.33 hectares and increased an-
other 1898.79 hectares from 2017–2024. The in-
crease in the area is mostly in the southern part 
of the study area, such as Temon and Panjatan 
sub-districts, which in recent years have land 
cover change. An increase in the areas with a 
low environmental quality index will affect the 
decline in air quality, water quality, soil qual-
ity and potential disasters, such as flooding, 
landslides, improved microclimate, land subsi-
dance and a variety of other potential disaster 
(Liu and Zhang, 2024). Thus, it is necessary to 
regularly monitor the quality of the environ-
ment around NYIA so that land cover change 
can always be controlled and can be immedi-
ately reversed if there is an extreme decrease 
in the quality index. The following Tables 5 
and 6, Figures 7 and 8 present the time series 
environment quality index at the research site.

Land cover change to RSEI

According to the results of the processing 
RSEI time series, there was a decrease in high 
quality index area and an increase in the areas 
with low quality index, so it can be concluded 
that the study area experienced a decline in en-
vironmental quality from the year 2013–2024. 
The decrease in the environmental quality index 
mostly occurred in the Temon sub-district, which 
is a NYIA development area, as evidenced by the 
decline in the NDVI and the increase in the LST 
in the region. The decline in the value of RSEI in 
a region is influenced by various factors, includ-
ing an increase in the cultivated land and a de-
crease in the vegetation area that serves as an en-
vironmental balancer (Chen et al., 2022; Gong et 
al., 2023). This phenomenon also occurred in the 
study area, where there was an increase in built-up 
land, increasing by 572.38 hectares (2013–2017) 
and 269.97 hectares (2017–2024). The increase 
in built-up land is correlated with a decrease in 
the area of the very high and high environmental 

Table 5. RSEI time series processing results

No. RSEI value RSEI level
Area (hectares)

2013 2013–2017 2017 2017–2024 2024

1 0–0.343 Very low 541.09 +99,70 640.97 +223.26 864.05

2 0.344–0.0496 Low 3925.33 +20.63 3945.96 +1452.53 5398.49

3 0.497–0.601 Moderate 9370.01 +399.76 9769.77 -213.37 9556.40

4 0.602–0.707 High 13010.79 -295.17 12715.62 -1720.91 10994.71

5 0.708–1 Very high 9027.71 -228.92 8798.79 +251.49 9050.28

Total 37887.93 – 37887.93 – 37887.93

Figure 7. Graph of RSEI values changes time series
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Figure 8. RSEI time series: (a) 2013, (b) 2017, (c) 2024

a)

b)

c)
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quality index which decreased by 524.09 hectares 
(2013–2017) and 1469.42 hectares (2017–2024).

In addition, the reduced vegetation cover 
also affects the decrease in the environmental 
quality index, as evidenced by the decreased 
area of vegetation from 2013–2017 with an 
area of 137.82 hectares and 97.34 hectares 
(2017–2024), where at the same interval of the 
year there was also an increase in the area with 

very low and low RSEI, as well as a decrease in 
areas of very high and high RSEIs in the study 
area. According to the results of such analy-
sis, efforts are needed in limiting the growth of 
built-up land and reducing the area of vegeta-
tion to maintain environmental quality in the 
area study. The following Table 7 presents the 
time series data related to changes in land cover 
and RSEI in the area study (Fig. 9, Fig. 10).

Table 6. RSEI change for each sub-district

No. RSEI value RSEI level
Area (hectares)

2013 2013–2017 2017 2017–2024 2024

Kokap sub-district

1 0–0.343 Very low 134.32 -10.15 124.17 -12.08 112.09

2 0.344–0.0496 Low 140.37 -79.46 60.91 -1.74 59.17

3 0.497–0.601 Moderate 682.82 -242.72 440.10 -22.44 417.66

4 0.602–0.707 High 2512.62 +81.11 2593.75 -362.31 2231.44

5 0.708–1 Very high 3317.47 +247.22 3564.69 391.57 3956.26

Wates sub-district

1 0–0.343 Very low 6.59 +9.77 16.36 +33.34 49.70

2 0.344–0.0496 Low 393.44 +84.28 477.72 +211.18 688.90

3 0.497–0.601 Moderate 1322.63 +115.62 1438.25 -45.56 1392.69

4 0.602–0.707 High 997.23 -183.25 813.98 -128.45 685.53

5 0.708–1 Very high 184.23 -26.42 157.81 -70.51 87.30

Pengasih sub-district

1 0–0.343 Very low 0.93 +0.04 0.97 +0.68 1.65

2 0.344–0.0496 Low 174.35 -32.03 142.32 +29.13 171.45

3 0.497–0.601 Moderate 927.76 +65.78 993.54 -136.50 857.04

4 0.602–0.707 High 2717.22 +37.83 2755.05 -348.25 2406.80

5 0.708–1 Very high 1444.16 -71.62 1372.54 +454.94 1827.48

Panjatan sub-district

1 0–0.343 Very low 89.85 -34.50 55.35 +75.25 130.60

2 0.344–0.0496 Low 951.86 +88.31 1040.17 +265.18 1305.35

3 0.497–0.601 Moderate 1350.41 +179.26 1529.67 -89.42 1440.25

4 0.602–0.707 High 1579.51 +28.80 1608.31 -182.53 1425.78

5 0.708–1 Very high 449.86 -261.87 187.99 -68.48 119.51

Purwodadi sub-district

1 0–0.343 Very low 210.68 +44.68 255.36 -13.31 242.05

2 0.344–0.0496 Low 1356.07 -322.72 1033.35 +528.78 1562.13

3 0.497–0.601 Moderate 2697.20 +288.95 2986.15 -33.34 2952.72

4 0.602–0.707 High 1469.82 +141.62 1611.44 -347.73 1263.71

5 0.708–1 Very high 404.66 -152.53 252.13 -134.31 117.82

Bagelen sub-district

1 0–0.343 Very low 10.49 -3.48 7.01 +0.76 0.77

2 0.344–0.0496 Low 192.08 -15.14 176.94 60.69 237.63

3 0.497–0.601 Moderate 790.53 -137.67 652.86 172.27 825.13

4 0.602–0.707 High 2441.58 -81.60 2359.98 104.37 2464.35

5 0.708–1 Very high 2825.95 +237.89 3063.84 -338.09 27.25.75
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Table 7. RSEI area changes, built-up land and vegetation 2013–2024

No Information
Area (hectares)

2013–2017 2017–2024

1 Increase very low and low RSEI area 120.33 1675.79

2 Decline very high and high RSEI area 524.09 1469.42

3 Built-up area increase 572.38 268.97

4 Vegetation area decrease 137.82 97.34

Figure 10. RSEI and land cover times series in the study area

Figure 9. Graph of RSEI area change, built-up land and vegetation
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DISCUSSION

The results of the research showed that there 
was a phenomenon of decrease in the environ-
mental quality index around NYIA, which is seen 
from the increase in the value of RSEI of the low 
category and the decreased value of the high cat-
egory. On the basis of the 4 parameters used in 
the calculation of RSEI, the greenness index of 
the result of the processing of NDVI gives a huge 
influence on the decline in index values, because 
the decrement of vegetation coverage will affect 
the declining value of other parameters of RSEI, 
such as the humidity index, drynees index and 
heat index (Liu et al., 2023). The phenomenon of 
decreased vegetation coverage that affects the de-
crease in the environmental quality index supports 
the previous research conducted in Anhui Prov-
ince, China, wihch stated that vegetation damage 
in open mining affects its setting of the ecological 
quality index resulting in a loss of 104,000 yuan/
year for the cost of carbon emissions, thus requir-
ing harmonious regulation of coal mining in eco-
nomic and environmental terms (Li et al., 2024). 
Further research located in the State of Paraíba, 
and Serra Negra do Norte Brazilian states that 
the associated levels of vegetation density influ-
ence the flux of solar radiation which affects the 
increase in the microclimate leading to a decrease 
in ecological quality (Liu et al., 2023).

Further, the decrease in the environmental 
quality index in 2024 around the NYIA is also 
due to the increase in built-up land, in the Temon 
sub-district that has increased 180,98 hectares. 
The increase in built-up land is more of a goods 
and services provider building that serves pas-
sengers on NYIA flights, including hotels, res-
taurants and transportation agencies. Increased 
built-up land has an impact on increased LST 
which has an effect on a decrease in the environ-
mental quality index, according to a study by the 
Siliguri Municipal Corporation in north-eastern 
India which shows that increased urban-built-up 
footprint areas have an influence on the decline in 
high ecological function around the area, thus re-
quiring ecological urban land-use planning (Mal-
lick, 2024). In addition, the impact of increased 
built-up land on the decline in the environmental 
quality index also occurred in Chengdu-Chongq-
ing urban China, where there was an increase in 
built-up land due to urbanization from 2000–2005 
which affected the low quality index of the envi-
ronment identified by the IRSEI model (Lei et al., 

2024). Thus, based on comparisons with previous 
research result, there are similarities with the re-
sults of existing research that changes in coverage 
and the level of vegetation density have a major 
influence on the decrease of the environmental 
quality index in a region.

CONCLUSIONS

The results of the study showed that the ma-
jority of the survey area has a high environmental 
quality index (RSEI) with an area of 10994.71 
hectares (2024), but there was a decrease in RSEI 
of the high category in the study area of about 
295.17 hectares (2013–2017) and 1720.91 hectars 
(2017–2024). In addition, there was a great in-
crease in RSEI category very low and low with 
an increase of 122.33 hectares from 2013–2017 
and 1898.79 hectares (2017–2024). The decline 
in the environmental quality index in the study 
area (2013–2024) is due to the decline of the en-
tire parameter values, including greenness index, 
humadity index, dryness index and heat index 
with varying rates of variation of values. The 
decline in RSEI in the area study was correlated 
with the increase in built-up land and decreased 
vegetation area, with built-up land increasing to 
572.38 hectares (2013–2017) and 269.97 hectares 
(2017–2024). In addition, there was a decrease in 
vegetation areas of approximately 137.82 hectars 
(2013–2017) and 97.34 hectares. (2017–2024). 
Finally, the results of this research could be fur-
ther developed to predict the environmental qual-
ity index in the next few years with the cellular 
automata model, where the results were used as 
guidelines in regional planning around NYIA.

REFERENCES

1. Alganci, U., 2019. Dynamic land cover mapping of 
urbanized cities with landsat 8 multi-temporal images: 
Comparative evaluation of classification algorithms 
and dimension reduction methods. ISPRS Int. J. Geo-
Information 8. https://doi.org/10.3390/ijgi8030139

2. Amalia, A.V., Fariz, T.R., Lutfiananda, F., Ihsan, H.M., 
Atunnisa, R., Jabbar, A., 2024. Comparison of Swat-
Based Ecohydrological Modeling in the Rawa Pening 
Catchment Area, Indonesia. J. Pendidik. IPA Indones. 
13, 1–11. https://doi.org/10.15294/jpii.v13i1.45277

3. Anthony, T., Shohan, A.A.A., Oludare, A., Al-
sulamy, S., Kafy, A. Al, Khedher, K.M., 2024. Spa-
tial analysis of land cover changes for detecting 



159

Ecological Engineering & Environmental Technology 2024, 25(8), 143–160

environmental degradation and promoting sus-
tainability. Kuwait J. Sci. 51, 100197. https://doi.
org/10.1016/j.kjs.2024.100197

4. Bidgoli, R.D., Koohbanani, H., Keshavarzi, A., Ku-
mar, V., 2020. Measurement and zonation of soil 
surface moisture in arid and semi-arid regions using 
Landsat 8 images. Arab. J. Geosci. 13. https://doi.
org/10.1007/s12517-020-05837-2

5. Chen, C., Wang, L., Yang, G., Sun, W., Song, Y., 
2023. Mapping of Ecological Environment Based 
on Google Earth Engine Cloud Computing Platform 
and Landsat Long-Term Data: A Case Study of the 
Zhoushan Archipelago. Remote Sens. 15. https://
doi.org/10.3390/rs15164072

6. Chen, Z., Chen, J., Zhou, C., Li, Y., 2022. An eco-
logical assessment process based on integrated 
remote sensing model: A case from Kaikukang-
Walagan District, Greater Khingan Range, China. 
Ecol. Inform. 70, 101699. https://doi.org/10.1016/j.
ecoinf.2022.101699

7. Dzakiyah, I.F., Saraswati, R., 2020. Drought area 
of agricultural land using Tasseled Cap Transfor-
mation (TCT) method in Ciampel Subdistrict Kar-
awang Regency. E3S Web Conf. 211, 1–10. https://
doi.org/10.1051/e3sconf/202021102005

8. Fariz, T.R., Faniza, V., 2023. Comparison of built-
up land indices for building density mapping in ur-
ban environments. AIP Conf. Proc. 2683, 30006. 
https://doi.org/10.1063/5.0125378

9. Gong, C., Lyu, F., Wang, Y., 2023. Spatiotempo-
ral change and drivers of ecosystem quality in 
the Loess Plateau based on RSEI: A case study of 
Shanxi, China. Ecol. Indic. 155, 111060. https://doi.
org/10.1016/j.ecolind.2023.111060

10. Hu, X., Xu, H., 2018. A new remote sensing index 
for assessing the spatial heterogeneity in urban eco-
logical quality: A case from Fuzhou City, China. 
Ecol. Indic. 89, 11–21. https://doi.org/10.1016/j.
ecolind.2018.02.006

11. Kadarisman, M., 2019. Policy Implementations of 
New Yogyakarta International Airport Develop-
ment. DLSU Bus. Econ. Rev. 28, 113–128. https://
doi.org/10.5281/zenodo.3270542

12. Lei, X., Liu, H., Li, S., Luo, Q., Cheng, S., Hu, G., 
Wang, X., Bai, W., 2024. Coupling coordination 
analysis of urbanization and ecological environ-
ment in Chengdu-Chongqing urban agglomeration. 
Ecol. Indic. 161, 111969. https://doi.org/10.1016/j.
ecolind.2024.111969

13. Li, N., Guo, Y., Wang, L., Wang, Q., Yan, D., Zhao, 
S., Lei, T., 2024. Evaluation and quantitative char-
acterization for the ecological environment impact 
of open pit mining on vegetation destruction from 
landsat time series: A case study of Wulishan lime-
stone mine. Ecol. Indic. 158, 111371. https://doi.
org/10.1016/j.ecolind.2023.111371

14. Li, Y., Tian, H., Zhang, J., Lu, S., Xie, Z., Shen, 
W., Zheng, Z., Li, M., Rong, P., Qin, Y., 2023. De-
tection of spatiotemporal changes in ecological 
quality in the Chinese mainland: Trends and attri-
butes. Sci. Total Environ. 884, 163791. https://doi.
org/10.1016/j.scitotenv.2023.163791

15. Liu, Y., Xu, W., Hong, Z., Wang, L., Ou, G., Lu, N., 
Dai, Q., 2023. Integrating three-dimensional green-
ness into RSEI improved the scientificity of eco-
logical environment quality assessment for forest. 
Ecol. Indic. 156, 111092. https://doi.org/10.1016/j.
ecolind.2023.111092

16. Liu, Y., Zhang, J., 2024. Spatio-temporal evolu-
tionary analysis of surface ecological quality in 
Pingshuo open-cast mine area, China. Environ. Sci. 
Pollut. Res. 31, 7312–7329. https://doi.org/10.1007/
s11356-023-31650-x

17. Majidi, A.N., Vojinovic, Z., Alves, A., Weesakul, S., 
Sanchez, A., Boogaard, F., Kluck, J., 2019. Planning 
Nature-Based Solutions for Urban Flood Reduction 
and Thermal Comfort Enhancement. Sustainability. 
https://doi.org/10.3390/su11226361

18. Mallick, S.K., 2024. Urban built-up area footprint 
(UBAF): A novel method of urban bio-capacity 
and ecological sensitivity assessment. J. Clean. 
Prod. 440, 140846. https://doi.org/10.1016/j.
jclepro.2024.140846

19. Sanjoto, T.B., 2020. Land Cover Change Anal-
ysis To Sedimentation Rate of Rawapening 
Lake. Int. J. Geomate 18, 294–301. https://doi.
org/10.21660/2020.70.icgeo50

20. Sidiq, W.A.B.N., Fariz, T.R., Saputro, P.A., Sholeh, 
M., 2024. Built-Up Development Prediction 
Based on Cellular Automata Modelling Around 
New Yogyakarta International Airport. Ecol. 
Eng. Environ. Technol. 25, 238–250. https://doi.
org/10.12912/27197050/175138

21. Sidiq, W.A.B.N., Sanjoto, T.B., Martuti, N.K.T., 
2022. Land Use Change Analysis to Springs Con-
ditions in Gunungpati Sub-District, Semarang City. 
Geosfera Indones. 7, 150. https://doi.org/10.19184/
geosi.v7i2.32085

22. Silva, D.J.F., Silva, T.R.B.F., de Oliveira, M.L., de 
Oliveira, G., Mishra, M., Santos, C.A.G., Silva, 
R.M. da, dos Santos, C.A.C., 2024. Analysis of sur-
face radiation fluxes and environmental variables 
over Caatinga vegetation with different densities. 
J. Arid Environ. 222. https://doi.org/10.1016/j.
jaridenv.2024.105163

23. Spadoni, G.L., Cavalli, A., Congedo, L., Munafò, 
M., 2020. Analysis of Normalized Difference Veg-
etation Index (NDVI) multi-temporal series for the 
production of forest cartography. Remote Sens. 
Appl. Soc. Environ. 20. https://doi.org/10.1016/j.
rsase.2020.100419

24. Syahza, A., Bakce, D., Irianti, M., 2019. Improved 



160

Ecological Engineering & Environmental Technology 2024, 25(8), 143–160

Peatlands Potential for Agricultural Purposes to Sup-
port Sustainable Development in Bengkalis District, 
Riau Province, Indonesia. J. Phys. Conf. Ser. 1351. 
https://doi.org/10.1088/1742-6596/1351/1/012114

25. Thacker, S., Adshead, D., Fay, M., Hallegatte, S., 
Harvey, M., Meller, H., O’Regan, N., Rozenberg, 
J., Watkins, G., Hall, J.W., 2019. Infrastructure for 
sustainable development. Nat. Sustain. 2, 324–331. 
https://doi.org/10.1038/s41893-019-0256-8

26. Ticehurst, C., Teng, J., Sengupta, A., 2022. Devel-
opment of a Multi-Index Method Based on Landsat 
Reflectance Data to Map Open Water in a Com-
plex Environment. Remote Sens. 14. https://doi.
org/10.3390/rs14051158

27. Utami, W., Nurcahyanto, D., Sudibyanung, S., 
2021. Economic Impacts of Land Acquisition for 
Yogyakarta International Airport Project. Mimb. 
J. Sos. dan Pembang. 37, 150–160. https://doi.
org/10.29313/mimbar.v37i1.6955

28. Xu, H., Li, C., Shi, T., 2022. Is the z-score stan-
dardized RSEI suitable for time-series ecological 
change detection? Comment on Zheng et al. Sci. 
Total Environ. 853, 1–5. https://doi.org/10.1016/j.
scitotenv.2022.158582

29. Xu, H., Wang, Y., Guan, H., Shi, T., Hu, X., 2019. 
Detecting Ecological Changes with a Remote Sens-
ing Based Ecological Index (RSEI) Produced Time 
Series and Change Vector Analysis. Remote Sens. 
https://doi.org/10.3390/rs11202345

30. Xu, W., Song, J., Long, Y., Mao, R., Tang, B., Li, 
B., 2023. Analysis and simulation of the driving 
mechanism and ecological effects of land cover 
change in the Weihe River basin, China. J. Environ. 
Manage. 344, 118320. https://doi.org/10.1016/j.
jenvman.2023.118320

31. Yan, X., Li, Jing, Yang, D., Li, Jiwei, Ma, T., Su, Y., 
Shao, J., Zhang, R., 2022. A Random Forest Algo-
rithm for Landsat Image Chromatic Aberration Res-
toration Based on GEE Cloud Platform—A Case 

Study of Yucatán Peninsula, Mexico. Remote Sens. 
14. https://doi.org/10.3390/rs14205154

32. Zamroni, A., Sugarbo, O., Trisnaning, P.T., Sagala, 
S.T., Putra, A.S., 2021. Geochemical approach for 
seawater intrusion assessment in the area around 
yogyakarta international airport, Indonesia. 
Iraqi Geol. J. 54, 1–11. https://doi.org/10.46717/
igj.54.1F.1ms-2021-06-21

33. Zhang, Q., Zhang, Y., Yu, T., Zhong, D., 2024. 
Primary driving factors of ecological environment 
system change based on directed weighted network 
illustrating with the Three-River Headwaters Re-
gion. Sci. Total Environ. 916, 170055. https://doi.
org/10.1016/j.scitotenv.2024.170055

34. Zhang, Z., Fan, Y., Jiao, Z., 2023. Wetland eco-
logical index and assessment of spatial-temporal 
changes of wetland ecological integrity. Sci. Total 
Environ. 862, 160741. https://doi.org/https://doi.
org/10.1016/j.scitotenv.2022.160741

35. Zheng, Y., He, Y., Zhou, Q., Wang, H., 2022. 
Quantitative Evaluation of Urban Expansion using 
NPP-VIIRS Nighttime Light and Landsat Spectral 
Data. Sustain. Cities Soc. 76, 103338. https://doi.
org/10.1016/j.scs.2021.103338

36. Zheng, Z., Wu, Z., Chen, Y., Guo, C., Marinello, F., 
2022. Instability of remote sensing based ecological 
index (RSEI) and its improvement for time series 
analysis. Sci. Total Environ. 814, 152595. https://doi.
org/https://doi.org/10.1016/j.scitotenv.2021.152595

37. Zhou, J., Liu, W., 2022. Monitoring and Evaluation of 
Eco-Environment Quality Based on Remote Sensing-
Based Ecological Index (RSEI) in Taihu Lake Basin, 
China. Sustain. 14. https://doi.org/10.3390/su14095642

38. Zhu, X., Helmer, E.H., Gwenzi, D., Collin, M., 
Fleming, S., Tian, J., Marcano-Vega, H., Meléndez-
Ackerman, E.J., Zimmerman, J.K., 2021. Character-
ization of dry-season phenology in tropical forests 
by reconstructing cloud-free landsat time series. Re-
mote Sens. 13. https://doi.org/10.3390/rs13234736




