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Abstract

Vibration of two simple open systems (namely theedir mass-sprins oscillator and the mathematical
pendulum) are investigated. During the motion, libdy absorbs matter through its boundary. In betes,
mechanism of mass absorption is modeled as a fgrieelastic’ collision and constant rate of makange is
assumed. The paper is focused on the influenceasfchange on the kinematic aspects of oscillations
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1. Introduction

Mass is generally not conserved when a supply asnmepresent, or when open systems
with a flow of mass through their surface are tocbasidered. Mass of the mechanical
system then is said to be variable. In such a tituathe general methodological
approaches of mechanics have to be properly mddifiesolid mechanics, the systems
with a variable mass appear as the result of algmbriented modelling, e.g., when
mass is expelled or captured by a structure or maciThe finite discontinual mass
variation in a very short time was not of specigbiest for a long time and was not
intensively discussed. Meshchersky was the firah whnsidered the velocity change of
a translatory moving body during step-like massiatem [1]. The motion of the
continuously mass variable systems is much moresiigated due to its application in
rocket theory [2] and astronomy [3]. The motiordéscribed with differential equations
with variable parameters. For the case when thes isagries continuously in time, the
influence of the reactive force on the motion iwveistigated by Cvecitanin and
Kovacic[4].

Mathematically the reactive force is the producthe mass variation function and
the relative velocity of mass separated from orealdd the particle. Usually, two special
cases were considered: the first one for zeroivelatelocity and the second for zero
absolute velocity of separated or added mass.de ofizero relative velocity, i.e. when



334

the absolute velocity of the separated or addeticfmis equal to the velocity of the
basic particle, the reactive force is also zero.

Based on the dynamics of the particle with timeyway variable mass and the basic
laws of dynamics, the theoretical consideratioringf dynamics of the body with time
variable mass is presented in this paper. Two mecalksystems are considered: one
dimensional oscillator and a mathematical pendulum.

The process of the mass increase is consideregtkegsetfectly inelastic impact of a
small mass on the main body. Based on the genaraétiens of motion, the
mathematical model for the oscillatory motion isnied.

2. Linear oscillator

In this section the open mechanical system is densd which absorbs matter from the
surroundings. Its physical model is presented gniFi
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Figure 1. One-dimensional linear oscillator exchaggnass with the surrounding

Let us assume that the masf) of the body changes with time proportionally be t
area of its surface with a constant rat€.-Mass change is described by the evolution
equation
mt)=r (1)
and at the beginningn(0) = my,.
In this way the mass of the body changes in timedily
m(t)=m,+I't, t>0. (2)
The added massmdrops at the body with the absolute velocitisee Fig.1).
The momentum principle in the case of mass excingnigbdy is
m(t)v = F +mift)u-v), 3)
where F is the resultant forcey velocity of the body andi velocity of the added
particles of massm In the case of free vibration, the mathematicabtlei of the one-
degree-of-freedom oscillator with time variable més
(my +t 1 )x(t) = —kex{t) + (u, - %{t)), (4)
Wherex(t) is the coordinate describing the position af todyu, =|u [sin(a) is thex —
component of the velocity, my is the initial mass of the body akdlenotes the stiffness
coefficient.
After rearranging, the equation of motion (4) takes form
(my +t0)x(t)+ rx(t)+ kx(t) =T u,, (5)
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The second term on the left hand side of (6) carebegnized as a damping of viscous
type, and a constant force occurs on the right side
The equation of motion (5) is supplemented by tiitgai conditions

x(0)=x, X(0)=v,. (6)
The analytical solution of the problem (5) — (6assfollows

k | k | r
x(t):AJO(Z\/; %+t]+BY{2\/; %+t]+?ux, (7)

where J,(.) andY,(.) are the Bessel functions of the first and secand, kespectively,

A andB are the unknown constants which fulfil the follogyiequations resulting from
initial conditions (6)

AJO[ = ]+BY{ p }Eux =%, ®

rz | k

—PAJ{ k“Z"J—\/ZBY{ k”}’]wo- ©)
m, r m, r

Some results of calculations are presented focliosen values of parametens=1 kg,
I'=0.01kg/s k=10N/m,u,=2m/s, and initial valuesx=0.1 m,vo=0m/s.
The solution (7) is presented in Fig.2.
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Figure 2. Time history of the body motion
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Figure 3. Amplitude vs. time for constant and vagymass oscillator
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The system oscillates around the equilibrium staten by the particular solution
u,l"/k. The shift, in the time history in Fig. 2, appeaise to the spring extension

caused by the constant momentum supply of the aohdsd. The amplitude decreases in
time while the mass of the oscillator grows, whiglustrated in Fig. 3.

The amplitude — frequency spectra, obtained ugiegdiscrete Fourier transform for
the system with constant and varying mass are shoWwig. 4.
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Figure 4. The amplitude spectra of the oscillatiaith constant and variable mass

The amplitude spectra in the case of mass exchangehose with constant mass are
quite different. This effect is connected with @ion of the self-frequency of the system
in time.

3. Pendulum exchanging masswith surroundings

The problem of motion of the pendulum which exclemgnass with surroundings is
investigated in this section. The process of mastanging is the same as described
above. In this case, the governing equation of plkema motion is

(m, +tF)L@(t) +T La(t) +ul sin(a - #(t))+ g(m, +t)sing(t) =0 (10)

with the initial conditions
#(0)=¢,, 9(0)=, (11)
whereL andmy are length of the pendulum and its initial maspeetively.

The problem (10) — (11) is solved only numericalle to geometric nonlinearities in
considered problem described by Eq. (10).

Results of two simulations concerning small andydaoscillations are presented
hereafter. Calculations have been made for thewiatlg values of parametensiy=1kg,
r=0.01kg/su=2m/s,L=0.7m andx=n/3.

In Fig. 5 time histories of two regimes of motiom gresented. One of them, caused
by the initial valueo=0.1,w0=0, is related to the small oscillations and theose one,
caused bye=1.3,w0=0, concerns the large oscillations.
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Figure 5. Time histories of small (left) and lafgight) oscillations

The character of vanishing amplitude of the penaulwhich absorbs mass in
comparison to constant amplitude in the case ofdpem with constant mass is
presented in Fig. 6.

A
1.4

1.2 r=0
1.0

08
0.6
04 >0
0.2

0.0 t
0 100 200 300 400 500 600 700

Figure 6. Amplitude vs. time for constant and vagymass pendulum

In Fig. 7 the amplitude-frequency spectra for thsecof small and large oscillations are
presented.
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Figure 7. Amplitude spectra for the case of smadl karge oscillations

Similarly as for the linear oscillator the amplijudpectrum is strongly affected by the
effect of mass variation.
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4, Conclusions

Two open systems with one degree of freedom haea levestigated. One of them
described by the linear differential equation ahé second one described by the
nonlinear equation. Nonlinearities in the pendulequation are of geometrical type. In
the governing equations some time depending caégffic appear due to changing mass
of the system. One additional term has the sanma &w viscous damping, and appears
in the both discussed structures. Other addititerah can be recognized in the linear
oscillator as a constant force, whereas in the glend its counterpart term is time
dependent and nonlinear.

The analytical solution of the initial value probledescribing motion of the linear
oscillator of variable mass has been achieved.pBEimelulum oscillation might have been
analyzed only numerically due to nonlinearities.

The mass increase causes decreasing amplitude aifatien in both tested
structures. The mass exchange with surroundingsctaffthe amplitude-frequency
spectra both for the linear oscillator and pendulum
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