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Abstract 

Vibration of two simple open systems (namely the linear mass-sprins oscillator and the mathematical 
pendulum) are investigated. During the motion, the body absorbs matter through its boundary. In both cases, 
mechanism of mass absorption is modeled as a perfectly 'inelastic' collision and constant rate of mass change is 
assumed. The paper is focused on the influence of mass change on the kinematic aspects of oscillations. 
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1. Introduction 

Mass is generally not conserved when a supply of mass is present, or when open systems 
with a flow of mass through their surface are to be considered. Mass of the mechanical 
system then is said to be variable. In such a situation, the general methodological 
approaches of mechanics have to be properly modified. In solid mechanics, the systems 
with a variable mass appear as the result of a problem-oriented modelling, e.g., when 
mass is expelled or captured by a structure or machine. The finite discontinual mass 
variation in a very short time was not of special interest for a long time and was not 
intensively discussed. Meshchersky was the first who considered the velocity change of 
a translatory moving body during step-like mass variation [1]. The motion of the 
continuously mass variable systems is much more investigated due to its application in 
rocket theory [2] and astronomy [3]. The motion is described with differential equations 
with variable parameters. For the case when the mass is varies continuously in time, the 
influence of the reactive force on the motion is investigated by Cvecitanin and 
Kovacic[4]. 

Mathematically the reactive force is the product of the mass variation function and 
the relative velocity of mass separated from or added to the particle. Usually, two special 
cases were considered: the first one for zero relative velocity and the second for zero 
absolute velocity of separated or added mass. In case of zero relative velocity, i.e. when 
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the absolute velocity of the separated or added particle is equal to the velocity of the 
basic particle, the reactive force is also zero. 

Based on the dynamics of the particle with time-varying variable mass and the basic 
laws of dynamics, the theoretical consideration of the dynamics of the body with time 
variable mass is presented in this paper. Two mechanical systems are considered: one 
dimensional oscillator and a mathematical pendulum. 

The process of the mass increase is considered as the perfectly inelastic impact of a 
small mass on the main body. Based on the general equations of motion, the 
mathematical model for the oscillatory motion is formed. 

2. Linear oscillator 

In this section the open mechanical system is considered which absorbs matter from the 
surroundings. Its physical model is presented in Fig.1. 
 

 
Figure 1. One-dimensional linear oscillator exchanging mass with the surrounding 

Let us assume that the mass m(t) of the body changes with time proportionally to the 
area of its surface with a constant rate – Γ. Mass change is described by the evolution 
equation 

Γ=)(tm&  (1) 
and at the beginning 0)0( mm = . 

In this way the mass of the body changes in time linearly 
tmtm Γ+= 0)( , 0>t . (2) 

The added mass dm drops at the body with the absolute velocity u (see Fig.1). 
The momentum principle in the case of mass exchanging body is 

( )( )vuFv −+= tmtm &&)( , (3) 
where F is the resultant force, v velocity of the body and u velocity of the added 
particles of mass dm. In the case of free vibration, the mathematical model of the one-
degree-of-freedom oscillator with time variable mass is 

( ) ( ) ( ) ( )( )txutxktxtm x &&& −Γ+−=Γ+0 , (4) 

Where x(t) is the coordinate describing the position of the body, )sin(|| αu=xu is the x – 

component of the velocity u, m0 is the initial mass of the body and k denotes the stiffness 
coefficient. 
After rearranging, the equation of motion (4) takes the form 

( ) ( ) ( ) ( ) xutxktxtxtm Γ=+Γ+Γ+ &&&0 , (5) 
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The second term on the left hand side of (6) can be recognized as a damping of viscous 
type, and a constant force occurs on the right side. 
The equation of motion (5) is supplemented by the initial conditions 

( ) ( ) 00 0,0 vxxx == & . (6) 
The analytical solution of the problem (5) – (6) is as follows 
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where (.)0J  and (.)0Y  are the Bessel functions of the first and second kind, respectively, 

A and B are the unknown constants which fulfil the following equations resulting from 
initial conditions (6) 
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Some results of calculations are presented for the chosen values of parameters m0=1 kg, 
�=0.01kg/s, �=10N/m, ux=2m/s, and initial values: x0=0.1 m, v0=0m/s. 
The solution (7) is presented in Fig.2. 

 

Figure 2. Time history of the body motion 

 

 
Figure 3. Amplitude vs. time for constant and varying mass oscillator 
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The system oscillates around the equilibrium state given by the particular solution 
kux /Γ . The shift, in the time history in Fig. 2, appears due to the spring extension 

caused by the constant momentum supply of the added mass. The amplitude decreases in 
time while the mass of the oscillator grows, which is illustrated in Fig. 3. 

The amplitude – frequency spectra, obtained using the discrete Fourier transform for 
the system with constant and varying mass are shown in Fig. 4. 
 

 

Figure 4. The amplitude spectra of the oscillations with constant and variable mass 

The amplitude spectra in the case of mass exchange and those with constant mass are 
quite different. This effect is connected with variation of the self-frequency of the system 
in time. 

3. Pendulum exchanging mass with surroundings 

The problem of motion of the pendulum which exchanges mass with surroundings is 
investigated in this section. The process of mass exchanging is the same as described 
above. In this case, the governing equation of pendulum motion is 
 

( ) ( ) ( ) 0)(sin)(sin)()( 00 =Γ++−Γ+Γ+Γ+ ttmgtutLtLtm ϕϕαϕϕ &&&  (10) 
 
with the initial conditions 

( ) ( ) 00 0,0 ωϕϕϕ == & , (11) 
where L and m0 are length of the pendulum and its initial mass respectively. 

The problem (10) – (11) is solved only numerically due to geometric nonlinearities in 
considered problem described by Eq. (10). 

Results of two simulations concerning small and large oscillations are presented 
hereafter. Calculations have been made for the following values of parameters: m0=1kg, 
�=0.01kg/s, �=2m/s, �=0.7m and �=π/3. 

In Fig. 5 time histories of two regimes of motion are presented. One of them, caused 
by the initial values φ0=0.1, ω0=0, is related to the small oscillations and the second one, 
caused by φ0=1.3, ω0=0, concerns the large oscillations. 
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Figure 5. Time histories of small (left) and large (right) oscillations 

The character of vanishing amplitude of the pendulum which absorbs mass in 
comparison to constant amplitude in the case of pendulum with constant mass is 
presented in Fig. 6. 

 
Figure 6. Amplitude vs. time for constant and varying mass pendulum 

In Fig. 7 the amplitude-frequency spectra for the case of small and large oscillations are 
presented. 

 
Figure 7. Amplitude spectra for the case of small and large oscillations 

Similarly as for the linear oscillator the amplitude spectrum is strongly affected by the 
effect of mass variation. 
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4. Conclusions  

Two open systems with one degree of freedom have been investigated. One of them 
described by the linear differential equation and the second one described by the 
nonlinear equation. Nonlinearities in the pendulum equation are of geometrical type. In 
the governing equations some time depending coefficients appear due to changing mass 
of the system. One additional term has the same form as viscous damping, and appears 
in the both discussed structures. Other additional term can be recognized in the linear 
oscillator as a constant force, whereas in the pendulum its counterpart term is time 
dependent and nonlinear. 

The analytical solution of the initial value problem describing motion of the linear 
oscillator of variable mass has been achieved. The pendulum oscillation might have been 
analyzed only numerically due to nonlinearities. 

The mass increase causes decreasing amplitude of oscillation in both tested 
structures. The mass exchange with surroundings affects the amplitude-frequency 
spectra both for the linear oscillator and pendulum.  
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