PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and properties of carbon/carbon and polymer/carbon porous monolithic composites

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: An overview of own works on preparation of monolithic carbon/carbon and polymer/carbon composites, that were fabricated using natural biological precursors for both composite components: carbonized plant stem for a support and chitosan or furfuryl alcohol for a filler, is presented. Composites based on monolithic porous supports prepared from expanded graphite are also discussed. Design/methodology/approach: The supports were prepared by carbonization of plants stems or by compression of expanded graphite. Next step was infiltration with the polymers, that were cross-linked on the supports. The structure and properties of the supports and the composites were characterized using numerous experimental techniques: thermogravimetry, helium gas densitometry, mercury porosimetry and adsorption of N2 gas, ultrasonic and electrical measurements, FTIR, EPR and observed with microscopes: optical, SEM and TEM. Findings: The carbon based composites were found to exhibit properties of the polymeric fillers, as well as electrical conductivity and high stiffness of monolithic carbon framework. Practical implications: The materials could be utilized as adsorbents/absorbents, catalysts supports, sensors, filters, etc. Originality/value: New class of original biodegradable bio-composites in the form of monoliths of optional shapes was obtained in contrast to adsorbents usually fabricated as granules or to composites being resins fulfilled by granules or fibres.
Rocznik
Strony
45--53
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Faculty of Biomedical Engineering, Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland
Bibliografia
  • [1] H. Marsh, F.R. Reinoso, Sciences of Carbon Materials, Publicaciones Universidad de Alicante, Alicante, 2000.
  • [2] A. Celzard, J.F. Mareche, G. Furdin, Modelling of exfoliated graphite, Progress in Materials Science 50/1 (2005) 93-179.
  • [3] A. Celzard, M. Krzesińska, J.F. Mareche, S. Puricelli, Scalar and vectorial percolation in compressed expanded graphite, Physica A 294 (2001) 283-294.
  • [4] M. Krzesińska, Structure and Properties of Natural and Processed Carbon Materials Studied with Ultrasounds: a Review, in “Current Topics in Acoustical Research”, R. Richard (ed.), Research Trends, Trivandrum, 3, 2003.
  • [5] C.E. Byrne, D.C. Nagle, Carbonization of wood for advanced materials applications, Carbon 35 (1997) 259-266.
  • [6] P. Greil, Biomorphous ceramics from lignocellulosics, Journal of the European Ceramic Society 21 (2001) 105-118.
  • [7] M. Krzesińska, B. Pilawa, S. Pusz, J. Ng, Physical characteristics of carbon materials derived from pyrolysed vascular plants, Biomass and Bioenergy 30/2 (2006) 166-176.
  • [8] M. Krzesińska, J. Majewska, Biomorphous carbon and carbon/polymer materials, Scientific Publishing Śląsk, Katowice, 2011 (in Polish).
  • [9] M. Krzesińska, A. Celzard, J.F. Mareche, S. Puricelli, Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds, Journal of Materials Research 16 (2001) 606-614.
  • [10] M. Krzesińska, A.I. Lachowski, Elastic properties of monolithic porous blocks of compressed expanded graphite related to their specific surface area and pore diameter, Materials Chemistry and Physics 86/1 (2004) 105-111.
  • [11] M. Krzesińska, Influence of the raw material on the pore structure and elastic properties of compressed expanded graphite blocks, Materials Chemistry and Physics 87 (2004) 336-344.
  • [12] A. Celzard, M. Krzesińska, D. Begin, J.F. Mareche, S. Puricelli, G. Furdin, Preparation, electrical and elastic properties of new anisotropic expanded graphite - based composites, Carbon 40 (2002) 557-566.
  • [13] P. Greil, T. Lifka, A. Kaindl, Biomorphic Cellular silicon carbide ceramics from wood: I. Processing and microstructure, Journal of the European Ceramic Society 18/14 (1998) 1961-1975.
  • [14] P. Greil, T. Lifka, A. Kaindl, Biomorphic Cellular silicon carbide ceramics from wood: II Mechanical properties, Journal of the European Ceramic Society 18/14 (1998) 1975-1983.
  • [15] A.K. Kercher, D.C. Nagle, Microstructural evolution during charcoal carbonization by X-ray diffraction analysis, Carbon 41 (2003) 15-27.
  • [16] M. Krzesińska, J. Zachariasz, The effect of pyrolysis temperature on the physical properties of monolithic carbons derived from solid iron bamboo, Journal of Analytical and Applied Pyrolysis 80/1 (2007) 209-215.
  • [17] M. Krzesińska, J. Zachariasz, J. Muszyński, S. Czajkowska, The thermal decomposition studies of solid iron bamboo (Dendrocalamus strictus) - potential precursor for ecomaterials, Bioresource Technology 99/11 (2008) 5110-5114.
  • [18] A. Koszorek, M. Krzesińska, S. Pusz, B. Pilawa, B. Kwiecińska, Relationship between the technical parameters of cokes produced from blends of three Polish coals of different coking ability, International Journal of Coal Geology 77 (2009) 363-371.
  • [19] H. Wang, J. Yao, Use of poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites, Industrial & Engineering Chemistry Research 45/19 (2006) 6393-6404.
  • [20] M. Rinaudo, Chitin and chitosan: properties and applications, Progress in Polymer Science 31/7 (2006) 603-632.
  • [21] T.S. Trung, C.-H. Ng, W.F. Stevens, Characterization of decrystallized chitosan and its application in biosorption of textile dyes, Biotechnology Letters 25/14 (2003) 1185-1190.
  • [22] C. Tsioptsias, I. Tsivintzelis, L. Papadopoulou, C. Panayiotou, A novel method for producing tissue engineering scaffolds from chitin, chitin-hydroxyapatite, and cellulose, Materials Science and Engineering C 29/1 (2009) 159-164.
  • [23] Z. Wang. Q. Hu, X. Dai, H. Wu, Y. Wang, J. Shen, Preparation and characterization of cellulose fiber/chitosan composites, Polymer Composites 30/10 (2008) 1517-1522.
  • [24] M. Krzesińska, J. Zachariasz, A.I. Lachowski, Ł. Smędowski, Eco-composite developed using biomorphous stiff skeleton of carbonised yucca and furfuryl alcohol as a filler, Journal of Materials Science 43/17 (2008) 5763-5771.
  • [25] M. Krzesińska, J. Zachariasz, A.I. Lachowski, Development of monolithic eco-composites from carbonized blocks of solid iron bamboo (Dendrocalamus strictus) by impregnation with furfuryl alcohol, Bioresource Technology 100 (2009) 1274-1278.
  • [26] M. Krzesińska, J. Majewska, S. Pusz, The development of novel carbon-carbon monolithic composites using metallurgical cokes as block porous carbon supports, Proceedings of the 16th International Seminar on Physics and Chemistry of Solids, Lviv, Ukraine, 2010, 17.
  • [27] M. Krzesińska, J. Majewska, S. Pusz, Novel carbon/ carbon composites based on a coke porous carbon shapes and poly(alcohol furfuryl), Karbo 2 (2011) 81-87 (in Polish).
  • [28] M. Krzesińska, N. Pisaroni, Mechanical properties of monolithic compressed expanded graphite-based adsorbents related to the temperature of pyrolysis and activation, studied with ultrasound, Materials Characterization 52/3 (2004) 195-202.
  • [29] M. Krzesińska, A. Tórz, J. Zachariasz, J. Muszyński, J. Socha, A. Marcinkowski, New chitosan/CEG (compressed expanded graphite) composites - preparation and physical properties, Green Chemistry 9 (2007) 842-844.
  • [30] M. Krzesinska, J. Majewska, The development and characterization of a novel chitosan/carbonised yucca (Yucca flaccida) bio-composite, Materials Science and Engineering C 30 (2010) 273-276.
  • [31] M. Krzesińska, A. Celzard, B. Grzyb, J.F. Mareche, Elastic properties and electrical conductivity of mica/expanded graphite nanocomposites, Materials Chemistry and Physics 97/1 (2006) 173-181.
  • [32] S.-H. Lin, R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review, Journal of Environmental Management 90/3 (2009) 1336-1349.
  • [33] E. Garcia-Bordeje, F. Kapteijn, J.A. Moulijn, Preparation and characterisation of carbon-coated monoliths for catalyst supports, Carbon 40 (2002) 1079-1088.
  • [34] R.-L. Jia, C.-Y. Wang, S.-M. Wang, Preparation of carbon supported platinum catalysts: role of p sites on carbon support surface, Journal of Materials Science 41 (2006) 6881-6888.
  • [35] T. Budinova, M. Krzesinska, B. Tsyntsarski, J. Zachariasz, B. Petrova, Activated carbon produced from bamboo pellets for removal of arsenic(III) ions from water, Bulgarian Chemical Communications 40/2 (2008) 166-172.H.C. Lee, Y.G. Jeong, B.G. Min, W.S. Lyoo, S.C. Lee, Preparation and acid dye adsorption behavior of polyurethane/chitosan composite foams, Fibers and Polymers 10/5 (2009) 636-642.
  • [37] D. Sud, G. Mahajan, M.P. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review, Bioresource Technology 99/14 (2008) 6017-6027.
  • [38] W.S. Wan Ngah, L.C. Teong, M.A.K.M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review, Carbohydrate Polymers 83/4 (2011) 1446-1456.
  • [39] M. Qian, A.L. Suo, Y. Yao, Z.H. Jin, Polyelectrolyte-stabilized glucose biosensor based on woodceramics as electrode, Clinical Biochemistry 37/2 (2004) 155-161.
  • [40] M. Yang, Y. Yang, B. Liu, G. Shen, R. Yu, Amperometric glucose biosensor based on chitosan with improved selectivity and stability, Sensors and Actuators B: Chemical 101/3 (2004) 269-276.
  • [41] D.B. Singh, G. Prasad, D.C. Rupainwar, V.N. Singh, As (III) removal from aqueous solution by adsorption, Water, Air, & Soil Pollution 42/3-4 (1988) 373-386.
  • [42] B. Pilawa, S. Bartlomiejczyk, Carbon materials as oximetric probes, Materials Engineering 2/168 (2009) 123-126 (in Polish).
  • [43] B. Pilawa, S. Bartłomiejczyk, M. Krzesińska, S. Pusz, J. Zachariasz, W. Walach, Influence of oxygen O2 on microwave saturation of EPR lines of plants carbonized at 650°C and potential application in medicine, Engineering of Biomaterials 11 (2008) 9-11.
  • [44] M. Elas, B.B. Williams, A. Parasca, C. Mailer, C.A. Pelizzari, M.A. Lewis, J.N. River, G.S. Karczmar, E.D. Barth, H.J. Halpern, Quantitative Tumor Oxymetric Images From 4D Electron Paramagnetic Resonance Imaging (EPRI): Methodology and Comparison With Blood Oxygen Level-Dependent (BOLD) MRI, Magnetic Resonance in Medicine 49 (2003) 682-691.
  • [45] K. Kasai, K. Shibata, K. Saito, T. Okabe, Humidity sensor characteristics of woodceramics, Journal of Porous Materials 4 (1997) 277-280.
  • [46] US Patent 6229318 Electrical resistance type humidity sensor, May 8 (2001).
Uwagi
Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8962fe85-f86d-4ff8-8edc-b5b6e881ea0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.