PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fertiliser properties of wastewater sludge and sludge ash - a case study from the Finnish forest industry

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this case study we compared the fertiliser properties of an industrial wastewater treatment sludge and a sludge ash to the requirements of the Finnish Fertiliser Product Decree. The sludge was obtained from the activated sludge wastewater treatment plant of a Finnish non-integrated pulp mill. The sludge was furthermore incinerated at a laboratory in a muffle furnace (850 °C) to obtain sludge ash. The total Cd (4.9 mg/kg d.m.) concentration in the pulp sludge exceeded the Finnish limit value (1.5 mg/kg d.m.) for fertiliser products used in agriculture. In the sludge ash, the total concentration of Cd (39 mg/kg; d.m.) exceeded the Finnish limit value (25 mg/kg d.m.) for ash fertilisers used in forestry. These results restrict the potential reuse options of these residues. However, from the utilisation point of view, the enrichment of essential plant macro-nutrients was most notable, resulting to the following total concentrations of these elements in the sludge ash: P (26,000 mg/kg d.m.), S (40,000 mg/kg d.m.), K (11,000 mg/kg d.m.), Ca (83,000 mg/kg d.m.) and Mg (10,000 mg/kg d.m.). Therefore, we conclude that, the converting of sludge into ash may promote the reuse of this wastewater treatment residue to a more value-adding fertiliser by-product to be used as a soil improver and growing medium in landscaping or landfills sites or other closed industrial areas, where heavy metal limit values for fertilisers are not applied in Finland.
Rocznik
Strony
63--78
Opis fizyczny
Bibliogr. 57 poz., tab.
Twórcy
autor
  • Stora Enso International Oy, Imatra Research Centre, Tornansaarenraitti 48, FI-55800 Imatra, Finland, phone +358-040-577-3498
  • Department of Environmental Protection, City of Kemi, Valtakatu 26, FI-94100 Kemi, Finland
autor
  • Department of Bioproducts and Biosystems, School of Chemical Technology, Aalto University, PO Box 16300, FI-00075 Aalto, Finland
Bibliografia
  • [1] Hubbe MA, Metts JR, Hermosilla D, Angeles Blanco M, Yerushalmi L, Haghighat F, et al. Wastewater treatment and reclamation: A review of pulp and paper industry practices and opportunities. BioResources. 2016;11:7953-8091. DOI: 10.15376/biores.11.3.Hubbe.
  • [2] Luostarinen S, Grönroos J, Hellstedt M, Nousiainen J, Munther J. Modelling manure quantity and quality in Finland. Front Sustain Food Syst. 2018;2: paper 60. DOI: 10.3389/fsufs.2018.00060.
  • [3] Haile A, Gelebo GG, Tesfaye T, Mengie W, Mebrate MA, Abuhay A, et al. Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials. Bioresour Bioprocess. 2021;8, paper 35. DOI: 10.1186/s40643-021-00385-3.
  • [4] Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance). 32008L0098:2008-11. Available from: http://data.europa.eu/eli/dir/2008/98/oj.
  • [5] Cieślik MB, Świerczek L, Konieczka P. Analytical and legislative challenges of sewage sludge processing and management. Monatch Chem. 2018;149:1635-45. DOI: 10.1007/s00706-018-2255-2.
  • [6] Chew KW, Chia SR, Yen HW, Nomanbhay S, Ho YC, Show PL. Transformation of biomass waste into sustainable organic fertilisers. Sustainability. 2019;11, paper 2266. DOI: 10.3390/su11082266.
  • [7] Watkins G, Mäkelä M, Dahl O. Innovative use of potential industrial residues from steel, paper and pulp industries - a preliminary study. Prog Ind Ecol. 2010;7:185-204. DOI: 10.1504/PIE.2010.037775.
  • [8] Devi P, Saroha AK. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals. Bioresource Technol. 2014;162:308-15. DOI: 10.1016/j.biortech.2014.03.093.
  • [9] Gerlach RW, Dobb DE, Raab GA, Nocerino JM. Gy sampling theory in environmental studies. 1. Assessing soil splitting protocols. J Chemometrics. 2002;16:321-8. DOI: 10.1002/cem.705.
  • [10] Scarlat N, Fahl F, Dallemand JF. Status and opportunities for energy recovery from municipal solid waste in Europe. Waste Biomass Valori. 2019;10:2425-44. DOI: 10.1007/s12649-018-0297-7.
  • [11] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control) (recast) (Text with EEA relevance). 32010L0075. Available from: https://eur-lex.europa.eu/eli/dir/2010/75/oj.
  • [12] ISO 10390:2005. Soil quality - determination of pH. Available from: https://www.iso.org/standard/40879.html.
  • [13] SFS-EN 15934:20:en. Sludge, treated biowaste, soil and waste. Calculation of dry matter fraction after determination of dry residue or water content. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/198991.html.stx.
  • [14] SFS-EN 15169:en Characterization of waste. Determination of loss on ignition in waste, sludge and sediments. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID6/1/8591.html.stx.
  • [15] SFS-EN 12945:2014+A1:2016en. Liming materials. Determination of neutralizing value. Titrimetric methods. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/440914.html.stx.
  • [16] SFS-EN 13971:2020:en. Carbonate and silicate liming materials. Determination of reactivity. Potentiometric titration method with hydrochloric acid. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/927896.html.stx.
  • [17] SFS-EN 13654-1:en. Soil improvers and growing media. Determination of nitrogen. Part 1: Modified Kjeldahl method. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CEN/ID2/1/6841.html.stx.
  • [18] Kilpimaa S, Kuokkanen T, Lassi U. Characterization and utilization potential of wood ash from combustion process and carbon residue from gasification process. BioResources. 2013;8(1):1011-27. DOI: 10.15376/biores.8.1.1011-1027.
  • [19] Oksanen J, Pöykiö R, Dahl O. Comparison of untreated, lime-stabilized and composted wastewater sludges from a pulp, board and paper mill integrate as a fertiliser product. J Ecol Eng. 2021;22:47-58. DOI: 10.12911/22998993/135867.
  • [20] SFS-EN ISO 6579-1:2017:en. Microbiology of the food chain. Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp. Available from: https://online.sfs.fi/fi/index/tuotteet/SFS/CENISO/ID2/6/477784.html.stx.
  • [21] Pesonen J, Kaakinen J, Välimäki I, Illikainen M, Kuokkanen T. Comparison of standard methods for evaluating the metal concentrations in bio ash. Int J Environ Waste Manage. 2017;20:203-14. DOI: 10.1504/IJEWM.2017.087149.
  • [22] Karczmarek A, Studziński W. Effect of sludge sample drying before the determination of mobility of metals by sequential extraction method. World Sci News. 2017;73:24-33. Available from: https://bibliotekanauki.pl/articles/1178406.
  • [23] Shtiza A, Swennen R. Appropriate sampling strategy and analytical methodology to address contamination by industry. Part 2: Geochemical and speciation analysis. Cent Eur J Geosci. 2011;3:53-70. DOI: 10.2478/v10085-010-0033-4.
  • [24] Mendoza Martinez CL, Sermyagina E, Vakkilainen E. Hydrothermal carbonization of chemical and biological pulp mill Sludges. Energies. 2021;14;paper 5693. DOI: 10.3390/en14185693.
  • [25] Vassilev SV, Baxter D, Vassileva CG. An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter. Fuel. 2013:391-449. DOI: 10.1016/j.fuel.2013.05.043.
  • [26] Aycan N, Turan NG. Effects of different agro-based materials on composting of pulp/paper-mill sludge. Arch Environ Prot. 2014;40:33-40. DOI: 10.2478/aep-2014-0008.
  • [27] Li T, Tong Z, Meng S, Li CY, Gao B, Bayabil HK. Characterization of residues from non-woody pulping process and its function as fertiliser. Chemosphere. 2021;262: paper 127906. DOI: 10.1016/j.chemosphere.2020.127906.
  • [28] Khater ESG. Some physical and chemical properties of compost. Int J Waste Resources. 2015;5: paper 1000172. DOI: 10.4172/2252-5211.1000172
  • [29] Neina D. The role of soil pH in plant nutrition and soil remediation. Appl Environ Soil Sci. 2019;2019: paper 5794869. DOI: 10.1155/2019/5794869.
  • [30] Gondek M, Weindorf DC, Thiel C, Kleinheinz G. Soluble salts in compost and their effects on soil and plants: A review. Compost Sci Util. 2020;28:59-75. DOI: 10.1080/1065657X.2020.1772906.
  • [31] Abdullah R, Ishak CF, Kadir WR, Bakar RA. Characterization and feasibility assessment of recycled paper mill sludges for land application in relation to the environment. Int J Environ Res Public Health. 2015;12:9314-29. DOI: 10.3390/ijerph120809314.
  • [32] Liu H, Gao D, Chen T, Cai H, Zheng G. Improvement of salinity in sewage sludge compost prior to its utilization as nursery substrate. J Air Waste Manage Assoc. 2014;64:546-51. DOI: 10.1080/10962247.2013.872710.
  • [33] Rasa K, Pennanen T, Peltoniemi K, Velmala S, Fritze H, Kaseva J, et al. Pulp and paper mill sludge decrease soil erodibility. J Environ Qual. 2021;50:172-84. DOI: 10.1002/jeq.2.20170.
  • [34] Kinnula S, Toivonen M, Soinne H, Joona J, Kivelä J. Effects of mixed pulp mill sludges on crops yields and quality. Agric Food Sci. 2020;29:276-86. DOI: 10.23986/afsci.95600.
  • [35] Mäkelä-Kurtto R, Eurola M, Justén A, Backma B, Luona S, Karttunen V, et al. Arsenic and other elements in agro-ecosystems in Finland and particularly in the Pirkanmaa region. Geology Survey of Finland. Miscellaneous Publications 73. GTK Espoo Finland; 2007. Available from: http://projects.gtk.fi/export/sites/projects/ramas/reports/ArsenicInagroecosystems.pdf.
  • [36] Ling J, Zhang H, Husain T, Kazemi K. Feasibility study of potential use of pulp and paper mill fly ash as a co-composting material. Int J Environ Sci Nat Res. 2017;5:167-73. DOI: 10.19080/IJESNR.2017.05.555675.
  • [37] Li T, Tong Z, Meng S, Li CY, Gao B, Bayabil HK. Characterization of residues from non-woody pulping process and its function as fertiliser. Chemosphere. 2021;262: paper 127906. DOI: 10.1016/j.chemosphere.2020.127906.
  • [38] Myllymäki P, Pesonen J, Nurmesniemi ET, Romar H, Tynjälä P, Hu T, et al. The use of industrial waste materials for the simultaneous removal of ammonium nitrogen and phosphate from the anaerobic digestion reject water. Waste Biomass Valor. 2020;11:4013-24. DOI: 10.1007/s12649-019-00724-8.
  • [39] Collivignarelli MC, Abbà A, Frattarola A, Miino MC, Padovani S, Katsoyiannis I, et al. Legislation for the reuse of biosolids on agricultural land in European Union: Overview. Sustainability. 2019;11:paper 6015. DOI: 10.3390/su11216015.
  • [40] Theliander H, Grén U. A system analysis of the chemical recovery plant at the sulfate pulping process. Part 3. A survey of common practice in slaking and caustisizing. Nord Pulp Paper Res J. 1987;2:101-8. DOI: 10.3183/npprj-1987-02-03-p101-108.
  • [41] Fearon O, Nykänen V, Kuitunen S, Ruuttunen K, Alén, Alopaeus V, et al. Detailed modelling of the kraft pulping chemistry: carbohydrate reactions. AIChE J. 2020;66: paper e16252. DOI: 10.1002/aic.16252.
  • [42] Kinnarinen T, Golmaei M, Jernström E, Häkkinen A. Separation, treatment and utilization of inorganic residues of chemical pulp mills. J Clean Prod. 2016;133:953-64. DOI: 10.1016/j.jclepro.2016.06.024.
  • [43] Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No. 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 (Text with EEA relevance). 32019R1009. Available from: https://eur-lex.europa.eu/eli/reg/2019/1009/oj.
  • [44] Dąbrowska L. Fractions of heavy metals in residue after incineration of sewage sludge. Environ Prot Eng. 2013;39:105-13. DOI: 10.5277/EPE130210.
  • [45] Nzihou A, Stanmore B. The fate of heavy metals during combustion and gasification of contaminated biomass - A brief review. J Hazard Mater. 2013;256:56-66. DOI: 10.1016/j.jhazmat.2013.02.050.
  • [46] Santos RM, Mertens G, Salman M, Cizer Ö, Van Gerven T. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J Environ Manage. 2013;128:807-21. DOI: 10.1016/j.jenvman.2013.06.033.
  • [47] Meyer-Dombard DA, Bogner JE, Malas J. A review of landfill microbiology and ecology: A call for modernization with ´Next Generation` Technology. Front Microbiol. 2020;11: paper 1127. DOI: 10.3389/fmicb.2020.01127.
  • [48] Nkinahamira F, Suanon F, Chi Q, Li Y, Feng M, Huang X, et al. Occurrence, geochemical fractionation, and environmental risk assessment of major and trace elements in sewage sludge. J Environ Manage. 2019;249: paper 109427. DOI: 10.1016/j.jenvman.2019.109427.
  • [49] Kaakinen J, Kuokkanen T, Kujala K, Välimäki I, Jokinen H. The use of a five-stage sequential leaching procedure for risk assessment of heavy metals in waste rock utilized in railway ballast. Soil Sediment Contam. 2012;21:322-34. DOI: 10.1080/15320383.2012.664183.
  • [50] Luukkonen T, Heponiemi A, Runtti H, Pesonen J, Yliniemi J, Lassi U. Application of alkali-activated materials for water and wastewater treatment: a review. Rev Environ Sci Biotechnol. 2019;18:271-97. DOI: 10.1007/s11157-019-09494-0.
  • [51] Karwowska B, Dąbrowska L. Bioavailability of heavy metals in the municipal sewage sludge. Ecol Chem Eng A. 2017;24:75-86. DOI: 10.2428/ecea.2017.24(1)6.
  • [52] Pesonen J, Kuokkanen T, Rautio P, Lassi U. Bioavailability of nutrients and harmful elements in ash fertilisers: Effect of granulation. Biomass Bioenerg. 2017;100:92-7. DOI: 10.1016/j.biombioe.2017.03.019.
  • [53] Hei L, Jin P, Zhu X, Ye W, Yang Y. Characteristics of speciation of heavy metals in municipal sewage sludge of Guangzhou as fertiliser. Procedia Environ Sci. 2016;31:232-40. DOI: 10.1016/j.proenv.2016.02.031.
  • [54] Jamroz E, Bekier J, Medynska-Juraszek A, Kaluza-Haladyn A, Cwielag-Piasecka I, Bednik M. The contribution of water extractable forms of plant nutrients to evaluate MSW compost maturity: a case study. Sci Rep. 2020;10: paper 12842. DOI: 10.1038/s41598-020-69860-9.
  • [55] Wuana RA, Eneji IS, Ugwu EC. Heavy metals leaching behavior and ecological risks in water and wastewater treatment sludges. Adv Environ Res. 2017;6:281-99. DOI: 10.12989/aer.2017.6.4.281.
  • [56] Kubota R, Ohta A, Okai T. Speciation of 38 elements in eight GSJ geochemical sedimentary reference materials determined using a sequential extraction technique. Geochem J. 2014;48:165-88. DOI: 10.2343/geochemj.2.0297.
  • [57] Ribbe N, Arinaitwe K, Dadi T, Friese K, von Tűmpling W. Trace-element behaviour in sediments of Ugandan part of Lake Victoria: results from sequential extraction and chemometrical evaluation. Environ Earth Sci. 2021;80: paper 323. DOI: 10.1007/s12665-021-09554-1.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89604d7e-2bf3-42c6-ae00-7d043ed13706
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.