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Abstract—For the past few years, artificial neural networks

(ANNs) have been one of the most common solutions relied

upon while developing automated speech recognition (ASR)

acoustic models. There are several variants of ANNs, such

as deep neural networks (DNNs), recurrent neural networks

(RNNs), and convolutional neural networks (CNNs). A CNN

model is widely used as a method for improving image pro-

cessing performance. In recent years, CNNs have also been

utilized in ASR techniques, and this paper investigates the

preliminary result of an end-to-end CNN-based ASR using

NVIDIA NeMo on the Iban corpus, an under-resourced lan-

guage. Studies have shown that CNNs have also managed

to produce excellent word error (WER) rates for the acous-

tic model on ASR for speech data. Conversely, results and

studies concerned with under-resourced languages remain un-

satisfactory. Hence, by using NVIDIA NeMo, a new ASR en-

gine developed by NVIDIA, the viability and the potential of

this alternative approach are evaluated in this paper. Two ex-

periments were conducted: the number of resources used in

the works of our ASR’s training was manipulated, as was the

internal parameter of the engine used, namely the epochs. The

results of those experiments are then analyzed and compared

with the results shown in existing papers.

Keywords—acoustic modeling, automated speech recognition,

convolutional neural network, CNN, under-resourced language,

NVIDIA NeMo.

1. Introduction

Acoustic models are one of the most important components

of automated speech recognition (ASR) systems. Acoustic

model functions represent the relationship between an au-

dio signal and the phonemes or other linguistic units that

make up speech in an ASR. A good acoustic model will

help an ASR recognize speech inputs accurately and will

produce excellent training data. Current state-of-the-art

(SOTA) acoustic models rely primarily on end-to-end ar-

tificial neural model’s algorithm [1] which helps simplify

the conventional module-based ASR system into a single

deep learning framework.

In the case of low-resourced languages, the ability to tran-

scribe the language accurately is much more critical, since

low-resourced languages have limited amounts of speech

data available. As mentioned by Chuangsuwanich et al. [2],

a speech recognizer typically requires the following: thou-

sands of hours of transcribed speech for the statistical learn-

ing of the acoustic model, a phonetic pronunciation dictio-

nary that determines how words of the language are decom-

posed into smaller phone-like units, and a large collection

of texts to create the language model. For limited-resourced

languages, these items are expensive and time-consuming

to obtain [3]. Hence, an acoustic model is required to be

able to perform excellently, although with limited resources

only in the case of low-resourced languages.

The first objective of this paper is to investigate how an

end-to-end CNN-based ASR model performs on the Iban

corpus, an under-resourced language. Experiments have

been conducted using different amounts of resources on

a CNN model to identify whether this architecture has the

means to overcome the problem of the lack of training data

of an under-resourced language. The second objective is to

perform sensitivity analysis concerning the selected archi-

tecture parameters, in order to investigate their impact on

the word error rate (WER) produced. A further experiment

is conducted after the most optimal amount of resources to

be used for model training has been identified, with one

of the parameters used in the training phase being manip-

ulated.

2. Literature Review

2.1. Neural Network and Under-resourced Languages

Over the past few years, artificial neural networks (ANNs)

have been among the most well-known options for devel-

oping an ASR’s acoustic model [4]. There are several

variants of ANNs in existence, including deep neural net-

work (DNNs), recurrent neural networks (RNNs), and con-

volutional neural networks (CNNs). Currently, many re-
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searchers are looking into the capabilities of CNN when

working on ASR technologies, because this approach has

shown some promising results in terms of performance,

with a WER of 0.0295 using a beam search decoder with

an external neural language model [5] and of 0.019/0.041

using ContextNet, a fully convolutional encoder that incor-

porates global context information into convolution layers

by adding squeeze-and-excitation modules, with language

model [6]. Several research projects have already been

conducted to investigate how to further enhance the perfor-

mance of an ASR using a neural network by experimenting

with the acoustic model for under-resourced languages.

Implementation of a multilingual neural network ASR ar-

chitecture for an under-resourced language is a popular

method for achieving better accuracy. Biswas et al. has

implemented this to improve the performance of their ASR

for the native language of South Africa, isiZulu, which has

an issue of “code switching”, i.e. a method of combining

their native language with different languages in their ev-

eryday conversations [7]. Researches implemented three

types of acoustic models, with two of them implemented

as multilingual methods, in order to alternatively solve this

matter. They were able to enhance the performance of their

ASR reaching an overall WER of ≥ 0.55 from the initial

baseline of 0.63, which is an increase of roughly 0.08 in

terms of reduced error rate, for each experiment they con-

ducted. Their acoustic model was a variant of the Gaussian

hidden Markov model (GMM/HMM), multilingual DNNs

and multilingual time delay-long short-term memory neu-

ral networks (TDNN-LSTMs). This effort was a good im-

provement for their ASR in terms of WER performance,

although their results are still scaled as a “high-error rate”

ASR performance. They concluded that a higher amount of

monolingual data for training is necessary to achieve very

good WER performance for their under-resourced language.

Furthermore, He et al. also conducted a research experi-

ment on improving the WER of an ASR for an under-

resourced language, Iban, by adopting the multi-task learn-

ing (MLT) and acoustic landmark method for the purpose

of ASR training [8]. The authors used an ASR trained with

the TIMIT corpus using the MLT method and then further

trained it for detection and classification landmarks. The

same ASR was then cross-lingually adapted to the Iban

corpus as a secondary task. From their experiment, they

were able to increase the performance of an ASR trained

with very few resources, “Iban 10%”, meaning that ASR

was trained with as little as 40 min of Iban data, to a re-

duced WER of 0.087 on a mono-phone and 0.0617 on a tri-

phone ASR. Conversely, although a cross-language land-

mark detector provides useful information complementary

to orthographic transcription, visual inspection indicates

that a cross-language landmark detector is not as accurate

as a same-language landmark detector. They later sug-

gested training a more accurate landmark detector using

RNN methods that could be applied to multilingual trained

corpora as a means to overcome the aforementioned belief

as their future work.

2.2. CNN as the Chosen Architecture

Although producing an ASR for low-resourced language

has proven to be quite a challenge, past research has shown

that an ASR with a single deep learning framework acous-

tic model, such as CNN, was able to produce promising

results using only raw unprocessed speech data in estimat-

ing phonemes [9] and ASR with an excellent WER (in

comparison with other ANNs), such as the DNN model

architecture [10].

Palaz in [9] has proven that CNN was able to outperform

or produce a similar result when compared with an ANN-

based system that takes standard cepstral features as inputs.

He was able to prove that contrary to his previous findings,

in which poor ASR performance was attained using raw

speech signal as input to DNN, his study on large vocabu-

lary speech recognition (LVCSR) indicates that CNNs have

an edge over DNNs in modeling raw speech signals. From

his study, he was able to get a WER of 6.7 using a neural

model of three CNN layers with one max pooling layer plus

a hidden layer and HMM as decoder, but taking only a raw

speech signal as its input, in comparison with HMM-ANN

with one hidden layer and using mel-frequency cepstrum

(MFCC) to preprocess its input with a WER of 7.0. Both

were tested and trained on the Wall Street Journal corpus.

As the number of layers increases to three hidden layers

for each model, Palaza’s CNN model achieving a WER of

5.6 outperforms the ANN model even further, as the latter

achieved a value of 6.4. It is known that under-resourced

languages lack the resources needed for training. Further-

more, even without the need of data pre-processing, hav-

ing only raw speech data as a requirement for an ANN to

train its model, would serve as a potential step in perhaps

not eliminating, but reducing the difficulties faced while

producing well-performing ASR for under-resourced lan-

guages. This may be achieved by allowing only raw speech

data as a necessity to train an ASR, eliminating the need

for an abundant resource for preprocessing and accurate

transcribing.

Moreover, much research has been conducted recently

showing that CNN outperforms several other architectures,

including the famous speech recognition neural network

architecture, RNN, in building ASR for low-resourced lan-

guages. In papers [11]–[14], Reyes et al., Thai et al., Mon,

and Lekshmi and Sherly stated that CNN offers a truly

exceptional feature extraction capability. These authors

were conducting experiments on their respective under-

resourced languages using the CNN architecture. Since

CNN is a SOTA architecture for image and graphic classi-

fication, it is not surprising that this NN would be able to

perform better in terms of feature extraction. Taking raw

speech signal as a spectrogram, CNN was able to distin-

guish even the smallest differences in features, leading to

an accurate prediction of spoken words. Mon in [13] also

mentioned that optimization of the hyperparameter in CNN

architecture was capable of producing better performance

than other ANNs, as well as greatly impacted the perfor-

44



Preliminary Evaluation of Convolutional Neural Network Acoustic Model for Iban Language Using NVIDIA NeMo

mance of ASR through the setting of the number of feature

maps and pooling the sizes of the CNN. Conversely, Thai

et al. stated that both deep RNN and GMM/HMM mod-

els were outperformed by their fully convolutional acous-

tic model which yields significant accuracy improve-

ments [12]. The same authors further mentioned that CNN

mitigates the issue of incompatibility in parallelization on

modern hardware, as cited by Collobert et al., and is advan-

tageous as it requires only a few parameters to collect suffi-

cient important features for an accurate prediction that leads

to the reduction of computational cost [15]. Furthermore,

Lekshmi et al. implored that CNN is a better deep learning

model because of its capability to reduce spectral varia-

tions [14] and to model spectral correlations between sig-

nals, as reported in Rabiner and Juang [16]. All the results

and benefits mentioned above further support the choice

of CNN.

Finally, another reason why CNN was chosen is due to the

Iban language being relatively unexplored as a CNN-ASR

model. There are not many works on CNN for Iban. One

of the most recognizable ones was that by Juan who exper-

imented on the Iban language using the DNN architecture

and GMM/HMM [17]. Hence, this also serves as a moti-

vation for CNN to be studied to address this research gap.

Focusing on the manipulation of data amount and the pa-

rameters that exist in the CNN architecture, this study aims

to look into the architecture’s performance on the basis of

the two factors that were highlighted earlier when dealing

with the same under-resourced situation in the case of the

Iban language.

The rest of this paper is organized as follows. Section 3

discusses the architecture of CNN. Section 4 presents the

methodology used for the experiment. Section 5 describes

the protocol used in the setup, as well as the results that

were obtained. Sections 6 and 7 discuss the findings and

constraints of this experiment, while Section 8 concludes

the research.

3. CNN Model Architecture

Rather than using fully linked hidden layers, as its com-

parable variant, i.e. DNN does, CNN uses a unique net-

work structure that comprises alternating convolution and

pooling layers. The idea behind the CNN architecture was

adopted from the pattern of connections between neurons

in the human brain and from the arrangement of the visual

cortex [18]. In the case of a CNN, the main purpose of

convolution is to extract features from visual inputs. Such

an approach is highly useful in image processing and iden-

tification. Through the learning of im-age features using

small squares of input data, convolution is capable of pre-

serving the spatial relationship between pixels, as an image

is basically a matrix of pixel values [19]. Essentially, a ma-

trix of pixel values can be used to represent every image

as well as waveforms. Typically, CNN comprises four ma-

jor operations: (1) convolution, (2) non-linearity – rectified

linear unit (ReLU), (3) pooling step, and (4) classification

(fully connected layer).

For the first operation (convolution), let us begin by con-

sidering a 5-image matrix with pixel values assuming, in

a special case, values of 0 and 1 only, as shown in Fig. 1.

Fig. 1. Original 5×5 matrix.

We shall also consider another 3 matrix as shown in Fig. 2.

This small matrix is known as a “kernel”, “filter” or “feature

detector”.

Fig. 2. 3×3 Kernel matrix.

As shown in Figs. 3–5, imagine that our 3×3 matrix (blue

selected cells) slides over the 5× 5 image matrix, mov-

ing by one pixel at a time. This process is known as

a “stride”. As the slide takes place, element-wise mul-

tiplication is computed between the two matrices and its

multiplication outputs are added to obtain the final integer,

which forms a single element of the output matrix (green

cells).

The output matrix (green highlights) was formed by sliding

the 3×3 kernel matrix over the original 5×5 matrix. The

computation of the dot product is a process called “con-

volved feature” or “activation map” or the “feature map”.

Note that the kernels detect features from the original input

image (5× 5 matrix). On the same input matrix (image),

different feature maps are produced by various values of

the kernel matrix. During implementation, the values of

these kernels are learned by the CNN throughout the train-

ing process. However, parameters such as the number of
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Fig. 3. First to third strides of the kernel matrix.

Fig. 4. Fourth to sixth strides of the kernel matrix.

Fig. 5. Seventh to ninth strides of the kernel matrix.
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kernels, kernel size, and architecture of the network still

need to be specified before the training process. Moreover,

before the convolution step is performed, three parameters

have to be specified, as they control the size of the con-

volved feature. These include: depth, which represents the

number of kernels used in convolution; stride, representing

the number of pixels that were slid over the input matrix by

our kernel matrix; and zero-padding, which involves zeros

that pad around the border of the input matrix, allowing the

application of the kernels to the bordering elements of the

input matrix. A higher number of kernels corresponds to

extraction of a higher number of image features and to the

network’s better recognition of patters in unseen images.

Next, while proceeding with the second operation (non-

linearity – ReLU of CNN), non-linearity should be applied

to CNN, since convolution is a linear operation but most

real-world data are non-linear. The purpose of the activa-

tion function is to transform the summed weighted input

from the node into the activation of the node or output for

that input of a neural network [20]. For CNN, ReLU is

the most commonly used activation function, as it has been

found to perform better in most situations when compared

with the other non-linear functions such as tanh or sigmoid.

Also, ReLU has become a common activation function for

several types of neural networks, as it offers ease of the

training process and often ensures better performance. It is

a piece-wise linear function that outputs the input directly

if it is positive, and the 0, if it is negative [20]. From the

previous example, when an image was formed from the out-

put feature map, it would be a mixture of black and white

shades since it is a result of black = negative values and

white = positive values. By applying ReLU to CNN, we

would be removing all negative values from the feature map

and would only be taking the non-negative values. This al-

lows the CNN to identify the image of a feature map, as

there are only non-negative values to indicate the differ-

ences of layers in the feature map. A feature map to which

ReLU has been applied is also called a “rectified” feature

map.

The third operation, namely the pooling step (spatial pool-

ing), also known as sub-sampling, is to reduce each feature

map’s dimensionality while simultaneously retaining im-

portant key information. Usually, the pooling layer comes

after finishing the convolutional layer. It serves as a layer

for reducing the input volume’s spatial dimensions (width×

height) for the next convolutional layer, although the depth

dimension of the volume is not affected. This operation is

also known as subsampling because the loss of information

occurs as well, alongside the reduction of dimensions. This

loss however is more beneficial to CNN, mainly because of

the following:

• the next layers in the network will suffer from lower

computational overheads,

• overfitting will be prevented.

Similarly to convolution, the pooling layer takes a sliding

window in which serves as a another newly defined ma-

trix window that is to be striding along with the rectified

feature map. In this operation, the window will be trans-

forming the values from the feature map by taking either

the maximum value or the average value, as observed un-

der the window known as “max pooling”. Because of its

better performance characteristics, max pooling has been

preferred in most situations. Figure 6 depicts the operation

of max pooling on a rectified feature map using a 2× 2
window.

Fig. 6. Max pooling of a rectified feature map.

Max pooling can be deduced as an operation of applying

a function over the input values. No new parameters were

introduced during this phase and it uses fixed-sized portions

at a time, with a size configurable as a parameter. Note that

although CNN may undergo max pooling, pooling opera-

tions are excluded in most CNN architectures. Thus far,

the operations have reduced the size of the original ma-

trix making it even smaller than it was before, since it was

divided into smaller-sized feature maps. As the first op-

eration progresses further to the second convolution, the

second pooling step, and then onward to the third convolu-

tion and also the third pooling step and so on, the size of

the matrix will be reduced further and more feature maps

will be produced, until the network can finally conclude

one or more possible outputs for the original image.

Finally, as mentioned earlier in this section, the fourth op-

eration (classification or a fully connected layer) is just as

what its name implies – the CNN layers are all fully in-

terconnected with each other. In other words, each neuron

in the preceding layer is connected to each neuron in the

next. Outputs from the second and third operations rep-

resent high-level features of the original image. The fully

connected layer uses these features for classifying the in-

put image into various classes on the basis of the training

dataset [19]. Furthermore, implementation of fully con-

nected layers enhances the learning of non-linear combi-

nations of those features. A combination of the features

gained through the convolution and pooling step would be

very helpful in classifying the image. Through the use of

the Softmax function, the sum of the output probabilities

is ensured to be equal to 1. Softmax, as an activation

function in the output layer of a fully connected layered
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network, takes a vector of arbitrary real-valued scores and

compresses it to a vector of values between 0 and 1 that

sums to 1.

4. Methodology

4.1. Architecture of CNN Used

The ASR experiment involving an under-resourced lan-

guage and the CNN architecture is performed using the

NVIDIA Neural Module (NeMo) in Google Colab. NeMo

is a flexible Python toolkit that allows building SOTA

speech and language deep learning models by using

reusable building blocks that can be safely connected to-

gether for conversational AI applications [21]. NeMo al-

lows the configuration of the architecture to be laid out by

specifying the model using a Yet Another Markup Lan-

guage (YAML) file. This allows us to have flexibility in

designing our CNN architecture. The content of the YAML

config file has an entry labeled as “encoder” with a field

called “jasper”, with parameters that specify the criteria of

one block, as such:

filters = 128, repeat = 1

kernel = [11]

stride = 2

dilation = 1

dropout = 0.2

residual = false

separable = true

se = true

se context size = −1.

Our configuration follows the Jasper 4x1 model, which

comprises (K = 4) blocks of single (R = 1) sub-blocks

and a greedy connectionist temporal classification (CTC)

decoder. A total of seven blocks was used, with the first

six of them consisting of pointwise and one-dimensional

time channel separable convolutional layers, followed by

batch normalization, and then the ReLU layer. Two sub-

sequent invariants of K × R blocks have 256 and 1024

filters each, respectively, and both were also repeated once.

Moreover, NeMo works closely with libraries from Pytorch

Lightning (PTL), in which the training and saving of mod-

els and checkpoints had relied heavily upon PTL functions

to complete.

The framework is shown in Fig. 7. Typically, the exper-

iment requires us to include raw audio data files together

with a manifest file that comprises metadata of our audio

files as inputs. NeMo requires a standardized manifest file

in which it is shown that each line in the file corresponds

to one audio sample, such that the number of lines in the

manifest is equal to that of samples that are represented

by that manifest. Moreover, NeMo specifies that a line

must contain the path to the audio file, the corresponding

transcript or path to the transcript file, and the duration of

the audio sample.

The CNN model then produces an output of text files that

hold the details and the WER of the trained dataset that was

calculated using a third-party plugin, the speech recognition

scoring toolkit (SCTK).

Fig. 7. Framework model of the CNN architecture used.
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4.2. Iban as an Under-resourced Language

The under-resourced language that was used is the Iban

language, a native language from Sarawak, Malaysia which

is still widely used by local people for communication

and official procedures. A total of 400 lines of Iban sen-

tences have been used for testing, whereas another 2000

lines of sentences taken from the original corpus dataset

are used for training. The resources were previously gath-

ered by Juan et al. who used them to investigate the re-

sourcefulness of closely related languages for automatic

speech recognition in low-resource languages from Ma-

laysia [22].

The corpus was composed of news gathered after receiving

the permission to collect data from a local news station in

Malaysia, Radio Televisyen Malaysia Berhad. A total of

3 GB of audio data was received for pre-processing, but

only 1.1 GB could be relied upon, as the rest turned out

to be of poor quality. The news data were transcribed into

text during a data collection workshop organized at the

Faculty of Computer Science and Technology, Universiti

Malaysia Sarawak, which was aimed to have users with

basic skills in using a transcriber application to annotate

speech signals [17]. Eight native speakers were hired to

produce the transcription data.

The Iban corpus has a total speaker of 6, a male-to-female

ratio of 1:2, 473 sentences, 11,000 words, and a total of

71 min of audio data for its test set. For its train set, there

were 17 speakers in total, with a male-to-female ratio of

7:10, 2659 sentences, 61,000 of words, and a total of 408

min audio data. In total, 3000 sentences uttered by 23

speakers in 8 h of clean speech were gathered during the

workshop [17].

5. Experiment Setup and Results

To investigate the authors’ first objective, i.e. how an end-

to-end CNN-based ASR model performs on the Iban lan-

guage, using a different number of lines of sentences for

Table 1

Protocol for the training lines experiment

No. of
Total

Total Total Total lines Total lines

training
speakers

female male spoken spoken

lines speakers speakers by female by male

200 10 5 5 100 100

400 10 5 5 200 200

600 10 5 5 300 300

800 11 6 5 400 400

1000 13 7 6 500 500

1200 13 7 6 600 600

1400 15 8 7 700 700

1600 16 9 7 800 800

1800 16 9 7 900 900

2000 17 10 7 1000 1000

testing and training, this experiment evaluates the number

of resources needed for a CNN architecture to perform well

on an under-resourced language such as Iban, since mostly,

resources are lacking. Experiment 1 comprises two rounds.

The first round of the experiment was conducted to iden-

tify the most optimal number of training lines to be used

in order to train our model to get the best WER perfor-

mance on an under-resourced language. With just 10 testing

lines, Table 1 shows the summary of the first round of the

experiment.

5.1. Experiment 1

The 10 testing lines used for this experiment were spoken by

a total of five speakers, of whom three were female and two

were male. Five lines were spoken by both male and female

speakers. The number of lines was distributed randomly

among the speakers, but the total lines spoken by the two

genders were kept equal. Table 2 shows the protocol of the

testing line used in the training line experiment. Table 3

shows the WER result achieved by a range of 200-2000

training lines with 10 test lines only.

Table 2

Protocol for the testing line used in the training lines

experiment

No. of No. of No. of male No. of No. of
testing female male lines spoken lines spoken
lines speakers speakers by female by male

10 3 2 5 5

Table 5 shows the WER result achieved by a range of 100–

400 testing lines with 2000 training lines.

We found that the most optimal number of training lines to

be used to get the best WER performance would be 2000

lines for training with a WER of 0.832. Subsequently, the

second round of Experiment 1 was conducted to obtain

baseline results for an increasing number of testing lines.

As obtained from the previous round, using 2000 training

lines as the most optimal number of training lines to get

the best WER, Table 4 shows the protocol of the second

round of the experiment. Table 5 shows the resulting WER.

Results showed that the best WER performance is 0.868

when tested on 400 lines.

5.2. Experiment 2

To fulfill the second objective of this paper, namely to ver-

ify sensitivity of the architecture to selected parameters in

order to investigate their effects on WER produced, we fur-

ther analyze the selected parameter that affects the perfor-

mance of the CNN-based ASR model. We used the most

optimal setup obtained from the previous experiment, with

2000 and 400 training and testing lines. We fine-tune the

number of epochs for each setup. This is done to ana-
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Table 3

WER result for the training lines experiment with 10 testing lines only

Training lines 200 400 600 800 1000 1200 1400 1600 1800 2000

Test lines 10 10 10 10 10 10 10 10 10 10

Epochs 100 100 100 100 100 100 100 100 100 100

WER 1.00 1.00 0.94 0.95 0.94 0.94 0.91 0.90 0.89 0.83

Table 4

Protocol for testing lines experiment

No. of No. of No. of male No. of No. of
testing female male lines spoken lines spoken
lines speakers speakers by female by male

100 4 2 50 50

200 4 2 100 100

300 4 2 150 150

400 4 2 200 200

Table 5

WER result for the testing lines experiment

with 2000 training lines

Test lines 100 200 300 400

Training lines 2000 2000 2000 2000

WER 0.88 0.87 0.91 0.87

lyze whether CNN models are capable of further improv-

ing performance of the ASR model on under-resourced lan-

guages by adjusting its parameters. The setup focuses on

manipulating the number of epochs from 500 to 5500, and

the models will be tested by measuring WER.

The numbers for both testing and training line protocols

were maintained the same as in Experiment 1 – 400 testing

lines and 2000 training lines.

Table 6 shows the result of WER achieved by the model

under the epochs of 500–5500, using 400 and 1000 testing

and training lines, respectively. The table shows that the

lowest WER achieved is 0.67, which was attained using the

ASR model when the epoch was set at 5500.

As for the time taken for the training process to finish,

we discover that each increase of the number of epochs

by 500 is equivalent to 3–4 h of training. Let us assume

that 500 epochs take 3 h to complete the training process.

Then, 1000 epochs, i.e. double the original amount, will

take 6 h to complete. Therefore, it is estimated that the

longest time taken for training was 44 h with the setup for

5500 epochs.

6. Discussion

6.1. Analysis of Results

Table 3 shows that as the number of the training lines

increases, the performance of ASR evaluated based on

its WER increases as well. This is also true for the increase

in the number of testing lines used, as shown in Table 5.

This indicates that even an end-to-end CNN architecture

is limited by the requirement of the resourcefulness of a

given language. The resourcefulness of the language still

plays a vital role in training a CNN ASR to perform well

on an under-resourced language. The number of lines for

testing and training in both setups clearly shows that it is

not enough for the ASR to perform excellently, as WER

remains above 0.8 in both setups. Nonetheless, the results

show that they could be further improved with more train-

ing data. This proves that the resourcefulness of the setup

with a higher number of lines of sentences used for training

the ASR using CNN on an under-resourced language helps

achieve better performance in terms of accurate audio tran-

scription. Under-resourced languages have small amounts

of data for training, and it seems that even CNN could not

overcome this problem. This answers the first objective of

this experiment.

Furthermore, the data presented in Table 6 shows that an

increase in the number of epochs also increases perfor-

mance, as WER improves. An epoch is the number of

passes of the entire training dataset that the deep learning

algorithm has completed. The experiment batches com-

prise iterations. As such, an epoch is not the number of

iterations completed, but the number of batches that have

been completed from the entire training session. Table 6

shows that there is a pattern related to the performance

of the training process. The early stage of Experiment 2,

starting from an epoch setup of 500, shows the minimum

performance of an outstanding WER of 0.85, which then

started to decrease gradually at a rate of −0.2 to −0.4
WER, until it reached the epoch setup of 2500. At the

epoch setup of 3000, performance of the experiment starts

to increase very slightly, at a rate of −0.01 WER only, lead-

ing us to conclude that the effort to manipulate the number

Table 6

WER results for Experiment 2

Epoch 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

WER 0.85 0.81 0.78 0.75 0.73 0.71 0.70 0.69 0.68 0.68 0.67
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epochs for a performance upgrade may have reached its

limit.

The peak performance of the ASR has been achieved when

the epoch count was set at 5500 with a WER of 0.67. At

this stage, the results showed that we were going in the

direction of overtraining the model, although this claim

must be investigated further. This may also be affected

by the number of resources used to train the model, as it

limits the increase in performance of the proposed ASR

model. Hence, for a CNN architecture, a high number of

epochs may help, for the betterment of WER, it may not

be the most effective variable to optimize the model’s per-

formance. the CNN architecture still relies on the amount

of resources to be trained in order to produce a very good

ASR for under-resourced languages.

6.2. Comparison of Results with a Similar Study on

Iban ASR

Juan has also researched the Iban language using DNN, one

of the most commonly applied ANN algorithms when gen-

erating ASRs [17]. Using DNN, the author was able to get

a WER performance of 0.184 on a 7 h speech audio data,

which is a much better results for an ASR model than the

one achieved with a CNN model. This may be caused by

integrating a pronunciation dictionary developed during in

the course of the research project, and by a language model

that was trained on 2 the 2 million-word Iban news data us-

ing the SRI language modelling toolkit (SRILM) to their

ASR model. Our CNN model was an end-to-end variant,

where neither the usage of a pronunciation dictionary nor

language model is a necessity, in contrast to the traditional

method of ASR development.

The absence of a pronunciation dictionary may have

affected the performance of the developed model, as the

difference of 0.486 WER exists when one compares the

CNN end-to-end model without a pronunciation dictionary

with Juan’s DNN model with both a pronunciation dictio-

nary and a language model [17]. Her pronunciation dictio-

nary was developed using the Malay grapheme-to-phoneme

(G2P) model, which helped them to produce an Iban G2P.

The method subsequently enabled them to produce a hy-

brid G2P as well – a model that incorporates pronuncia-

tion rules from Malay and Iban. The G2P was used to

produce a pronunciation dictionary for the architecture of

their Iban ASR.

The existing pronunciation dictionary may help the model

recognize specifically the phonetic structure of Iban lan-

guage, thus increasing its WER performance, whereas our

CNN model depends wholly on the performance of the

CNN-based acoustic model ASR and on the learning of

phonetics through convolutions of frames.

7. Limitations of Experiments

An obvious hindrance that we have been struggling with

while conducting this research experiment was the vague-

ness and ambiguity in understanding how the NVIDIA

NeMo ASR engine works. Although it is intended to serve

as a toolkit for building new SOTA conversational AI mod-

els, we believe that this new engine also has a high poten-

tial of becoming a “go-to” engine as an ASR development

toolkit. Unfortunately, to date, its documentation is limited,

and we are unable to fully benefit from this tool. For exam-

ple, the technique for integrating the language model and

pronunciation dictionary, the process of saving and loading

checkpoints, and the method for obtaining output transcripts

and WER files are still lacking and incomplete. This may

be due to the fact that this engine remains rather new, as

it was only released in 2019. Thus, it is still undergo-

ing development, fortunately at a rapid rate. Nonetheless,

this has placed upon us a blockade that limits us from

fully configuring our setup the way we have planned it ini-

tially. However, we still encourage the usage of this engine

to help its developer gain more feedback for improvement

purposes.

8. Conclusion and Future Work

This paper has shown how an end-to-end CNN architec-

ture using the NVIDIA NeMo engine and the Google Co-

lab toolkit performs on raw under-resourced language data

(Iban), with a WER of 0.67, using only 2000 lines of sen-

tences for training and without the help of a pronunciation

dictionary and a language model. The CNN architecture

may not be able to eliminate the lack of resources that is

faced by under-resourced languages, but with the integra-

tion of other tools, such as language models, this architec-

ture may also be able to achieve an excellent WER. This

paper presents also the results and a discussion on gradu-

ally increasing the performance of the model with different

configurations on its number of epochs.

Future work should include the training of the model us-

ing a more considerable amount of data, since it will be

interesting to see what the minimum amount of data is,

needed for the model to train in order to be able to achieve

a very good WER performance, under the same setup and

weights. Moreover, an increase in the number of filters or

blocks in the CNN architecture may yield different, pos-

sibly better results. Also, it would be desirable to iden-

tify whether the performance of the model upon exceeding

5500 epochs would help the ASR increase its performance,

would keep it stagnant or maybe would even lead to the

production of a negative output, namely to an increase in

WER caused by overtraining. Furthermore, other parame-

ters such as the learning rate, which would help increase the

WER of the model when configured to a certain state, must

be identified. Finally, the integration of language models

and/or pronunciation dictionaries with the model should

be investigated to learn whether it could help increase the

transcription accuracy of the CNN ASR model on the Iban

language.
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