PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On wavelet based enhancing possibilities of fuzzy classification methods

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
If the antecedents of a fuzzy classification method are derived from pictures or measured data, it might have too many dimensions to handle. A classification scheme based on such data has to apply a careful selection or processing of the measured results: either a sampling, re‐ sampling is necessary. or the usage of functions, transfor‐ mations that reduce the long, high dimensional observed data vector or matrix into a single point or to a low num‐ ber of points. Wavelet analysis can be useful in such cases in two ways. As the number of resulting points of the wavelet ana‐ lysis is approximately half at each filters, a consecutive application of wavelet transform can compress the me‐ asurement data, thus reducing the dimensionality of the signal, i.e., the antecedent. An SHDSL telecommunication line evaluation is used to demonstrate this type of appli‐ cability, wavelets help in this case to overcome the pro‐ blem of a one dimensional signal sampling. In the case of using statistical functions, like mean, variance, gradient, edge density, Shannon or Rényi en‐ tropies for the extraction of the information from a pic‐ ture or a measured data set, and they don not produce enough information for performing the classification well enough, one or two consecutive steps of wavelet analy‐ sis and applying the same functions for the thus resulting data can extend the number of antecedents, and can dis‐ till such parameters that were invisible for these functi‐ ons in the original data set. We give two examples, two fuzzy classification schemes to show the improvement caused by wavelet analysis: a measured surface of a com‐ bustion engine cylinder and a colonoscopy picture. In the case of the first example the wear degree is to be deter‐ mine, in the case of the second one, the roundish polyp content of the picture. In the first case the applied statisti‐ cal functions are Rényi entropy differences, the structural entropies, in the second case mean, standard deviation, Canny filtered edge density, gradients and the entropies. In all the examples stabilized KH rule interpolation was used to treat sparse rulebases.
Twórcy
autor
  • Széchenyi István University, H‑9026 Győr, Egyetem tér 1
  • Széchenyi István University, H‑9026 Győr, Egyetem tér 1
  • Széchenyi István University, H‑9026 Győr, Egyetem tér 1
  • Széchenyi István University, H‑9026 Győr, Egyetem tér 1
autor
  • Széchenyi István University, H‑9026 Győr, Egyetem tér 1
Bibliografia
  • [1] L. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, 1965, 338–353, 10.1016/S0019‑9958(65)90241‑X.
  • [2] E. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller”, International Journal of Man‑Machine Studies, vol. 7, no. 1, 1975, 1–13, 10.1016/S0020‑7373(75)80002‑2.
  • [3] L. A. Zadeh, “Outline of a New Approach to the Analysis of Complex Systems and Decision Processes”, IEEE Transactions on Systems, Man, and Cybernetics, vol. SMC‑3, no. 1, 1973, 28–44, 10.1109/TSMC.1973.5408575.
  • [4] L. Kó czy and K. Hirota, “Approximate reasoning by linear rule interpolation and general approximation”, International Journal of Approximate Reasoning, vol. 9, no. 3, 1993, 197–225, 10.1016/0888‑613X(93)90010‑B.
  • [5] L. Kóczy and K. Hirota, “Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases”, Information Sciences, vol. 71, no. 1‑2, 1993, 169–201, 10.1016/0020‑0255(93)90070‑3.
  • [6] D. Tikk, I. Joó , L. Kóczy, P. Vá rlaki, B. Moser, and T. D. Gedeon, “Stability of interpolative fuzzy KH controllers”, Fuzzy Sets and Systems, vol. 125, no. 1, 2002, 105–119, 10.1016/S0165‑0114(00)00104‑4.
  • [7] I. Daubechies, Ten Lectures on Wavelets, CBMS‑NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1992, 10.1137/1.9781611970104.
  • [8] A. Kiely and M. Klimesh. “The ICER progressive wavelet image compressor”. https://ipnpr.jpl.nasa.gov/progress_report/42-155/155J.pdf, 2003, Accessed on:2020‑09‑18.
  • [9] C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: an overview”, IEEE Transactions on Consumer Electronics, vol. 46, no. 4, 1103–1127.
  • [10] J.‑B.‑J. Fourier, Théorie Analitique de la Chaleur, Firmin Didot: Paris, 1822.
  • [11] S. Nagy and J. Pipek, “An economic prediction of the finer resolution level wavelet coefficients in electronic structure calculations”, Physical Chemistry Chemical Physics, vol. 17, no. 47, 2015, 31558–31565, 10.1039/C5CP01214G.
  • [12] A. Haar, “Zur Theorie der orthogonalen Funktionensysteme (On the theory of orthogonal function systems, in German)”, Mathematische Annalen, vol. 69, no. 3, 1910, 331–371, 10.1007/BF01456326.
  • [13] C. E. Shannon, “A mathematical theory of communication”, The Bell System Technical Journal, vol. 27, no. 3, 1948, 379–423, 10.1002/j.1538‑7305.1948.tb01338.x.
  • [14] A. Rényi, “On Measures of Entropy and Information”. In: Proceedings of the fourth Berkeley Symposium on Mathematics, Statistics and Probability, 1961, 547–561.
  • [15] J. Pipek and I. Varga, “Universal classification scheme for the spatial‑localization properties of one‑particle states in finite d‑dimensional systems”, Physical Review A, vol. 46, no. 6, 1992, 3148–3163, 10.1103/PhysRevA.46.3148.
  • [16] I. Varga and J. Pipek, “R\’enyi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems”, Physical Review E, vol. 68, no. 2, 2003, 026202, 10.1103/Phys RevE.68.026202.
  • [17] I. Mojzes, C. Dominkovics, G. Harsányi, S. Nagy, J. Pipek, and L. Dobos, “Heat treatment parameters effecting the fractal dimensions of AuGe metallization on GaAs”, Applied Physics Letters, vol. 91, no. 7, 2007, 073107, 10.1063/1.2768911.
  • [18] L. M. Molná r, S. Nagy, and I. Mojzes, “Structural entropy in detecting background patterns of AFM images”, Vacuum, vol. 84, no. 1, 2009, 179–183, 10.1016/j.vacuum.2009.04.025.
  • [19] A. Bonyá r, L. M. Molná r, and G. Harsányi,“Localization factor: A new parameter for the quantitative characterization of surface structure with atomic force microscopy (AFM)”, Micron, vol. 43, no. 2, 2012, 305–310, 10.1016/j.micron.2011.09.005.
  • [20] A. Bonyá r, “AFM characterization of the shape of surface structures with localization factor”, Micron, vol. 87, 2016, 1–9,10.1016/j.micron.2016.05.002.
  • [21] F. Lilik and J. Botzheim, “Fuzzy based Prequalification Methods for EoSHDSL Technology”, Acta Technica Jaurinensis, vol. 4, no. 1, 2011, 135–144.
  • [22] F. Lilik, S. Nagy, and L. T. Kó czy, “Wavelet based fuzzy rule bases in pre‑qualification of access networks’ wire pairs”. In: AFRICON 2015, Addis Ababa, Ethiopia, 2015, 1–5, 10.1109/AFRCON.2015.7332034.
  • [23] F. Lilik, S. Nagy, and L. T. Kó czy, “Improved Method for Predicting the Performance of the Physical Links in Telecommunications Access Networks”, Complexity, 2018, 3685927, 10.1155/2018/3685927.
  • [24] M. R. Dreyer and L. Solecki, “Verschleissuntersuchungen an Zylinderlaufbahnen von Verbrennungsmotoren”. In: 3. Symposium Produktionstechnik – Innovativ und Interdisziplinar, Zwickau, 2011, 69–74.
  • [25] S. Nagy and L. Solecki, “Wavelet Analysis and Structural Entropy Based Intelligent Classification Method for Combustion Engine Cylinder Surfaces”. In: Proceedings of the 8th European Symposium on Computational Intelligence and Mathematics, ESCIM, Sofia, 2016, 115–120.
  • [26] S. Nagy, F. Lilik, and L. T. Kó czy, “Entropy based fuzzy classification and detection aid for colorectal polyps”. In: 2017 IEEE AFRICON, 2017, 78–82, 10.1109/AFRCON.2017.8095459.
  • [27] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer”, International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, 2014, 283–293, 10.1007/s11548‑013‑0926‑3.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8949f57b-735b-4ffa-bfda-97bc9f5feee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.