PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Visual Quality and Morphological Responses of Rosemary Plants to UV-B Radiation and Salinity Stress

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to understand the effects of ultraviolet-B (UV-B) radiation and salinity stress on the visual quality and morphological parameters, one-year-old seedlings of rosemary (Rosmarinus officinalis L.) were grown under three UV-B levels (0, 4.32, 6.05 kJ m-2 d-1) and four salinity regimes (Control, 50, 100 and 150 mM NaCl) under greenhouse conditions. The results showed that enhanced UV-B radiation increased visual quality, growth index, plant biomass, shoot/root ratio, number of branches and leaves, leaf fresh and dry weight, leaf area index, specific leaf area, leaf thickness. The UV-B radiation had no significant effect on root length; however, shoot height, length of axillary shoots, length of inter node, leaf area, leaf length and width and concentration of chlorophyll b were negatively impacted by the UV-B radiation. On the other hand, salinity caused a significant decrease in plant biomass, root length, shoot height, shoot/root ratio, length of axillary shoots, length of inter node, number of branches and leaf area, leaf area index, leaf length and width, leaf fresh and dry weight, specific leaf area and concentration of Photosynthetic pigments. However, the number leaves and leaf thickness significantly increased under NaCl salinity treatments. Visual quality and growth index were hardly affected by increasing salinity until 100 mM, but declined clearly at 150 mM NaCl salinity. The interaction between UV-B irradiation and salinity showed that pre-treatment with UV-B irradiation alleviated the harmful effects of NaCl and improved the visual quality rosemary plants.
Rocznik
Strony
34--43
Opis fizyczny
Bibliogr. 57 poz., rys., tab.
Twórcy
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Crop Biotechnology and Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
autor
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Department of Horticulture and Landscape Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
  • Research institute of Forests and Rangelands, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
Bibliografia
  • 1. Abd El Lateef Gharib F. Zeid I M. Salem M A H. Ahmed E Z. 2014. Effects of Sargassum latifolium Extract on Growth, Oil Content and Enzymatic Activities of Rosemary Plants under Salinity Stress. Life Science Journal, 11, 933–945.
  • 2. Acosta-Motos J R. Ortuño M F. Bernal-Vicente A. Diaz-Vivancos P. Sanchez-Blanco M J. Hernandez J A. 2017. Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7 (1), 18.
  • 3. Agrawal S B. Rathore D. 2007. Changes in oxidative stress defense system in wheat (Triticum aestivum L.) and mung bean (Vigna radiate L.) cultivars grown with and without mineral nutrients and irradiated by supplemental Ultraviolet-B. Environmental and Experimental Botany, 59, 21–23.
  • 4. Alarcón J J. Morales M A. Ferrández T. Sánchez-Blanco M J. 2006. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. Journal of Horticultural Science and Biotechnology, 81, 845–853.
  • 5. Azza Mazher A M. El-Quesni E M F. Farahat M M. 2007. Responses of ornamental plants and woody trees to salinity. World Journal of Agricultural Sciences, 3, 386–395.
  • 6. Ben Rejeb I. Pastor V. Mauch-Mani B. 2014. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms. Plants, 3, 458–475.
  • 7. Caldwell M M. Bornman J F. Ballares C L. Flint S D. Kulandaivelu G. 2007. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Photochemical and Photobiological Sciences, 6: 252–266.
  • 8. Dubé S L. Bornman J F. 1992. Response of spruce seedlings to simultaneous exposure to ultraviolet-B radiation and cadmium. Plant Physiology and Biochemistry, 30, 761–767.
  • 9. Enteshari Sh. Kalantari Kh. Ghorbanli M. Torkzadeh M. 2005. The effect of different bands of ultraviolet radiation on pigments content in Glycine max L. Iranian Journal of Plant Biology, 18 (1), 77–84.
  • 10. Ershad Langroudi M. Sedaghathoor S. 2012. Effect of Different Media and Salinity Levels on Growth Traits of Rosemary (Rosmarinus officinalis L.). American-Eurasian Journal Agriculture & Environmental Science, 12 (9), 1134–1142.
  • 11. Fedina I. Grigorova I. Georgieva K. 2003. Response of barley seedlings to UV-B radiation as affected by NaCl. Journal of Plant Physiology, 160, 205–208.
  • 12. Gaberscik A. Voncina M. Trost T. Germ M. Bjorn L O. 2002. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. Journal of Photochern and Photobiol. B: Biology, 66, 30–36.
  • 13. Grammatikopoulos G. Drilias P. Kyparissis A. Petropoulou Y. Manetas Y. 2001. Reduction of ambient UV-B radiation does not affect growth but may change the flowering pattern of Rosmarinus officinalis L. Plant Ecology, 154, 119–122.
  • 14. Hamid N. Hussain H. Jawaid F. Rahman A. 2012. Short term exposure of UV-B radiation enhances salinity tolerance in vigna radiate. Pakistan Journal of Botany, 44 (2): 841–844.
  • 15. Hayes S. Velanis C. N. Jenkins G I. Franklin K A. 2014. UV-B detected by the UVR8 photoreceptor antagonizes auxin signaling and plant shade avoidance. Proc. Natl. Acad. Sci. USA. 111 (32), 11894–11899.
  • 16. Hejazi Mehrizi M. Shariatmadari H. Khoshgoftarmanesh A H. Dehghani F. 2012. Copper Effects on Growth, Lipid Peroxidation, and Total Phenolic Content of Rosemary Leaves under Salinity Stress. Journal of Agriculture Science and Technology, 14, 205–212.
  • 17. Hideg E. Jansen M A K. Strid A. 2013. UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends in Plant Science, 18, 107–115.
  • 18. Hofmann R W. Campbell B D. Bloor S J. Swinny E E. Markham K R. Ryan K G. Fountain D W. 2003. Responses to UV-B radiation in Trifolium repens L. physiological links to plant productivity and water availability. Plant, Cell and Environment, 26, 603–612.
  • 19. Hollosy F. 2002. Effects of ultraviolet radiation on plant cells. Micron, 33, 179–197.
  • 20. Hopkins L. Bond M A. Tobin A K. 2002. Ultraviolet-B radiation reduces the rates of cell division and elongation in the primary leaf of wheat (Triticum aestivum L.cv. Maris Huntsman). Plant, Cell & Environment, 25(5), 617–624.
  • 21. Javadmanesh S. Rahmani F. Pourakbar L. 2012. UV-B Radiation, Soil Salinity, Drought Stress and Their Concurrent Effects on Some Physiological Parameters in Mize Plant. American-Eurasian Journal of Toxicological Sciences, 4 (4), 154–164.
  • 22. Kataria S. Jajoo A. Guruprasad K N. 2015. Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B: Biology, 137, 55–66.
  • 23. Kiarostami Kh. Mohseni R. Saboora A. 2010. Biochemical changes of Rosmarinus officinalis under salt stress. Journal of Stress Physiology & Biochemistry, 6, 114–122.
  • 24. Lichtenthaler K H. 1994. Chlorophyll and carotenoids pigments of photosynthetic biomembrances. Methods in Enzymology, 148, 350–382.
  • 25. Luis J C. Martin P R. Valdes G F. 2007. UV-B radiation effects on foliar concentrations of rosmarinic and carnosic acids in rosemary plants. Food Chemistry, 101, 1211–1215.
  • 26. Mahajan S. Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics, 444, 139–158.
  • 27. Manchanda, G., Garg, N., 2008. Salinity and its effects on the functional biology of legumes. Acta Physiol Plant. 30, 595–618.
  • 28. Marwood C A. Greenberg B M. 1996. Effect of Supplementary UVB Radiation on Chlorophyll Synthesis and Accumulation of Photosystems during Chloroplast Development in Spirodela oligorrhiza. Photochemistry and Photobiology, 64 (4), 664–670.
  • 29. Mateu-Andrés I. Aguilella A. Boisset F. Currás R. Guara M. Laguna E. Marzo A. Puche M F. Pedrola J. 2013. Geographical patterns of genetic variation in rosemary (Rosmarinus officinalis) in the Mediterranean basin. Botanical Journal of the Linnean Society, 171, 700–712.
  • 30. McKenzie R L. Aucamp P J. Bais A F. Bjorn L O. Iyas M. Madronichg S. 2011. Ozone depletion and climate change: impacts on UV radiation. Photochemical and Photobiological Sciences, 10, 182–198.
  • 31. Miller G. Suzuki N. Ciftci-Yilmaz S. Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell and Environment, 33, 453–467.
  • 32. Mishra V. Srivastava G. Prasad S M. Abraham G. 2008. Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. Pesticide Biochemistry and Physiology, 92, 30–37.
  • 33. Munns R. 2005. Genes and salt tolerance: bringing them together. New Phytol, 167 (3), 645–663.
  • 34. Munns R. Tester M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Physiology, 59, 651–681.
  • 35. Niu G. Cabrera R I. 2010. Growth and physiological responses of landscape plants to saline water irrigation: A review. HortScience, 45:1605–1609.
  • 36. Niu G. Rodriguez D S. 2007. Salinity Tolerance of Lupinus havardii and Lupinus texensis. HortScience, 42(3): 526–528.
  • 37. Niu G. Rodriguez D S. Aguiniga L. 2007. Growth and landscape performance of ten herbaceous species in response to saline water irrigation. Journal of Environmental Horticulture, 25: 204–210.
  • 38. Nogues S. Baker N. 2000. Effects of drought on photosynthesis in Mediterranean plants growing under enhanced UV-B radiation. Journal of Experimental Botany, 51, 1309–1317.
  • 39. Ouhibi C. Attia H. Rebah F. Msilini N. Chebbi M. Aarrouf J. Urban L. Lachaal M. 2014. Salt stress mitigation by seed priming with UV-C in lettuce plants: Growth, antioxidant activity and phenolic compounds. Plant Physiology and Biochemistry, 83, 126–133.
  • 40. Passaglia A. da Silva R. Moreno K. Jorge N. Martins C F. 2009. Development of a DNA dosimeter system for monitoring the effects of solar-ultraviolet radiation. Photochemical and Photobiological Sciences, 8, 111–120.
  • 41. Pessarakli M. 2010. Handbook of Plant and Crop Stress. Third Edition. CRC Press.
  • 42. Radyukina N L. Toaima V I M. Zaripova N R. 2012. The Involvement of Low_Molecular Antioxidants in Cross_Adaptation of Medicine Plants to Successive Action of UV_B Radiation and Salinity. Russian Journal of Plant Physiology, 59(1):71–78.
  • 43. Reddy M P. Vora A B. 1986. Changes in pigment composition, hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity. Photosynthica, 20, 50–55.
  • 44. Rinnan R. Gehrke C. Michelsen A. 2006. Two mire species respond differently to enhanced ultraviolet-B radiation: Effects on biomass allocation and root exudation, New. Phytol., 169, 809–818.
  • 45. Rinnan R. Keinänen M M. Kasurinen A. Asikainen J. Kekki T K. Holopainen T. Ro-Poulsen H. Mikkelsen T N. Michelsen A. 2005. Ambient ultraviolet radiation in the Arctic reduces root biomass and alters microbial community composition but has no effects on microbial biomass, Glob. Change Biol., 11, 564–574.
  • 46. Rizzini L. Favory J J. Cloix C. Faggionato D. O’Hara A. Kaiserli E. Ulm R. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science, 332, 103–106.
  • 47. Robson T. Klem K. Urgan O. Jansen M A k. 2015. Re-interpreting plant morphological responses to UV-B radiation. Plant Cell Environ, 38: 856–866.
  • 48. Roro A G. Dukker S A F. Tone I M. Solhaug K A. Torre S. Olsen J. 2017. UV-B-induced Inhibition of Stem Elongation and Leaf Expansion in Pea Depends on Modulation of Gibberellin Metabolism and Intact Gibberellin Signalling. Journal of Plant Growth Regulation. 10.1007/s00344–017–9671–0.
  • 49. Rozema J. Broekman R. Lud D. Huiskes A. Moerdijk T. de Bakker N. Meijkamp B. Van Beem A. 2001. Consequences of depletion of stratospheric ozone for terrestrial antarctic ecosystems: the response of Deschampsia antarctica to enhanced UV-B radiation. Plant Ecol, 154, 101–115.
  • 50. Salachna P. Piechocki R. 2016. Effects of sodium chloride on growth and mineral nutrition of Purpletop vervain. Journal of Ecological Engineering, 17(2),148–152.
  • 51. Suzuki N. Koussevitzky S. Mittler R. Miller G. 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ, 35, 259–270.
  • 52. Tounekti T. Vadel A M. Bedoui A. Khemira H. 2008. NaCl stress affects growth and essential oil composition in rosemary (Rosmarinus officinalis L.). Journal of Horticultural Science & Biotechnology, 83, 267–273.
  • 53. Tounekti T. Vadel A M. Ennajeh M. Khemira H. Munné-Bosch S. 2011. Ionic interactions and salinity affect monoterpene and phenolic diterpene composition in rosemary (Rosmarinus officinalis). Journal of Plant Nutrition and Soil Science, 174, 504–514.
  • 54. Wahome P. Jesch H. Grittner I. 2001. Mechanisms of salt stress tolerance in two rose rootstocks: Rosa chinensis „Major”and R. rubiginosa. Scientia Horticulturae, 87, 207–216.
  • 55. Xu C. Sullivan J H. 2010. Reviewing the technical designs for experiments with ultraviolet-B radiation and impact on photosynthesis, DNA and secondary metabolism. Journal of Integrative Plant Biology, 52, 377–387.
  • 56. Zaller J G. Caldwell M M. Flint S D. Scopel A L. Sala O E. Ballaré C L. 2002. Solar UV-B radiation affects below-ground parameters in a fen ecosystem in Tierra del Fuego, Argentina: Implications of stratospheric ozone depletion, Glob. Change Biol, 8, 867–871.
  • 57. Zaremba T G. LeBon T R. Millar D B. Smeljkal R M. Hawley R J. 1984. Effects of ultraviolet light on the in vitro assembly of microtubules. Biochemistry, 23, 1073–1080.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89471d18-08c3-4746-8da5-941cfc80d84a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.