PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure of MMCs with SiC Particles after Gas-tungsten Arc Welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The gas-tungsten arc (GTA) welding behaviors of a magnesium matrix composite reinforced with SiC particles were examined in terms of microstructure characteristics and process efficiencies. This study focused on the effects of the GTAW process parameters (like welding current in the range of 100/200 A) on the size of the fusion zone (FZ). The analyses revealed the strong influence of the GTA welding process on the width and depth of the fusion zone and also on the refinement of the microstructure in the fusion zone. Additionally, the results of dendrite arm size (DAS) measurements were presented.
Rocznik
Strony
65--68
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Institute of Materials Engineering, Al. Armii Krajowej 19, 42-200 Czestochowa, Poland
  • Czestochowa University of Technology, Institute of Materials Engineering, Al. Armii Krajowej 19, 42-200 Czestochowa, Poland
autor
  • Rzeszow University of Technology, Department of Casting and Welding, St. W. Pola 2, 35-959 Rzeszow, Poland
Bibliografia
  • [1] Hai, Z.Y. & Xing, Y.L. (2004). Review of recent studies studies in magnesium matrix composites. Journal of Material Science. 39, 6153-6171.
  • [2] Dieringa, H. (2013). Applications: magnesium-based metal matrix composites (MMCs). Fundamentals of magnesium alloy metallurgy (317÷341). UK: Woodhead Publishing Limited.
  • [3] Braszczyńska, K.N., Lityńska, L., Zyska, A. & Baliga, W. (2003). TEM analyses of the interfaces between components in magnesium matrix composites reinforced with SiC particles, Materials Chemistry&Physics. 81, 326-328.
  • [4] Zhou, S., Deng, K., Li, J., Shang, S., Liang, W. & Fan, J. (2014). Effects of volume ratio on the microstructure and mechanical properties of particle reinforced magnesium matrix composite. Materials and Design. 63, 672-677.
  • [5] Braszczyńska, K.N., Zyska, A. & Braszczyński, J. (2003). Selection of the matrix composition in designing composites on the magnesium matrix alloys reinforced with SiC particles, Composites. 3(8), 353-359 (in Polish).
  • [6] Bochenek, A. & Braszczyńska, K.N. (2000). Structural analysis of the MgAl5 Matrix – SiC particles cast composites. Materials Science and Engineering A290. 122-127.
  • [7] Fan, J., Zhang, H., Dong, H., Xu, B., Zhang, Z. & Shi, L. (2014). Effects of processing technologies on mechanical properties of SiC particulate reinforced magnesium matrix composites. Journal of Wuhan University of Technology-Mater. Sci. Ed. 29. 769-772.
  • [8] Orłowicz, A.W., Trytek, A., Opiekun, Z. & Mróz, M. (2004). Formation the fusion geometry on Al-8%Fe alloy castings with arc plasma. Archiwum Odlewnictwa. 4(2), 53-58. (in Polish).
  • [9] Orłowicz, A.W. & Mróz. M. (2004). The effect of the arc welding process on the fusion surface layer on C355 alloy casting. Archiwum Odlewnictwa. 4, 11/2, 65÷70. (in Polish).
  • [10] Orłowicz, A.W. & Mróz, M. (2004). The effect of the amount of the heat input on the structure surface fused castings of on C355. Archiwum Odlewnictwa. 4(2), 59-64. (in Polish).
  • [11] Mróz, M., Orłowicz, A.W. & Tupaj, M. (2013). Geometry of remeltings and efficiency of the surface remelting process applied to cobalt alloy castings. Archives of Foundry Engineering. 13(2), 95-98.
  • [12] Padmanaban, G., Balasubramanian, V. & Sarin Sundar, J.K. (2010). Influences of welding processes on microstructure, hardness, and tensile properties of AZ31B magnesium alloy. Journal of Materials Engineering and Performance. 19, 155-165.
  • [13] Braszczyńska-Malik, K.N. & Mróz, M. (2011). Gas-tungsten arc welding of AZ91 magnesium alloy. Journal of Alloys and Compounds. 509, 9951-9958.
  • [14] Strzelecka, M., Iwaszko, J., Malik, M., Tomczyński, S. (2015). Surface modification of the AZ91 magnesium alloy. Archives of Civil and Mechanical Engineering. DOI: 10.1016/j.acme.2015.03.004.
  • [15] Szafarska, M., Iwaszko, J., Kudła, K. & Łęgowik, I. (2013). Utilisation of high-energy heat sources in magnesium alloy surface layer treatment. Archives of Metallurgy and Materials. 58, 619-624.
  • [16] Jun, S. & Nan, X. (2012). Effect of preheat on TIG welding of AZ61 magnesium alloy. International Journal of Minerals, Metallurgy and Materials. 19, 360-363.
  • [17] Razal Rose, A., Manisekar, K., Balasubramanian, V. & Rajakumar, S. (2012) Prediction and optimization of pulsed current tungsten inert gas welding parameters to attain maximum tensile strength in AZ61A magnesium alloy. Materials and Design. 37, 334-348.
  • [18] Majumdar, J.D., Chandra, B.R., Galun, R., Mordike, B.L. & Manna, I. (2003). Laser composite surfacing of a magnesium alloy with silicon carbide. Composites Science and Technology. 63, 771-778.
  • [19] Ding, W., Jiang, H., Zeng, X., Li, D. & Yao, S. (2007). Microstructure and mechanical properties of GTA surface modified composite layer on magnesium alloy AZ31 with SiCP. Journal of Alloys and Compounds. 429, 233-241.
  • [20] Zhang, S., Jiang, F. & Ding, W. (2008). Microstructure and mechanical performance of pulsed current gas tungsten arc surface engineered composite coatings on Mg alloy reinforced by SiCp. Materials Science and Engineering. 490A, 208-220.
  • [21] Ding, W., Jiang, H., Zeng, X., Li, D. & Yao, S. (2007). The properties of gas tungsten arc deposited SiCP and Al surface coating on magnesium alloy AZ31. Materials Letters. 61, 496-501.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89469059-db4f-49ec-8f86-bcf8a2b0ff51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.