PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some Similarities / Differences between Steel Static and Virtual Brass Static Casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An innovative method for determining the structural zones in the large static steel ingots has been described. It is based on the mathematical interpretation of some functions obtained due to simulation of temperature field and thermal gradient field for solidifying massive ingot. The method is associated with the extrema of an analyzed function and with its points of inflection. Particularly, the CET transformation is predicted as a time-consuming transition from the columnar- into equiaxed structure. The equations dealing with heat transfer balance for the continuous casting are presented and used for the simulation of temperature field in the solidifying virtual static brass ingot. The developed method for the prediction of structural zones formation is applied to determine these zones in the solidifying brass static ingot. Some differences / similarities between structure formation during solidification of the steel static ingot and virtual brass static ingot are studied. The developed method allows to predict the following structural zones: fine columnar grains zone, (FC), columnar grains zone, (C), equiaxed grains zone, (E). The FCCT-transformation and CET-transformation are forecast as sharp transitions of the analyzed structures. Similarities between steel static ingot morphology and that predicted for the virtual brass static ingot are described.
Rocznik
Strony
109--114
Opis fizyczny
Bibliogr. 34 poz., il., wykr., wzory
Twórcy
  • KGHM – Polish Copper Company, Skłodowskiej-Curie 48, 59-301 Lubin, Poland
  • Institute of Applied Mathematics and Mechanics, Rosa Luxemburg 74, 83-114 Donetsk, Ukraine
autor
  • Institute of Metallurgy and Materials, Reymonta 25, 30-059 Kraków, Poland
  • Institute of Metallurgy and Materials, Reymonta 25, 30-059 Kraków, Poland
Bibliografia
  • [1] Wołczyński, W. (2016). Large Steel Ingots: Microstructure Mathematical Modeling. In Taylor & Francis; R. Colas, G.E. Totten (Eds.), The Encyclopedia of Iron,.Steel, and Their Alloys. (pp. 1910-1924). Boca Raton-London-New York.
  • [2] Hunt, J.D. (1984). Steady State Columnar / Equiaxed Growth of Dendrites and Eutectics. Materials Science and Engineering. 65, 75-83.
  • [3] Alexandrova, I.V., Alexandrov, D.V., Aseev, D.L. & Bulitcheva, S.V. (2009). Mushy Layer Formation during Solidification of Binary Alloys from a Cooled Wall: the Role of Boundary Conditions. Acta Physica Polonica A. 115, 6-9.
  • [4] Wołczyński, W., Lipnicki, Z., Bydałek, A.W., & Ivanova, A.A. (2016). Structural Zones in Large Static Ingots. Forecasts for Continuously Cast Brass Ingot. Archives of Foundry Engineering. 16(3), 141-146.
  • [5] Suzuki, K., & Taniguchi, K. (1981). The Mechanism of Reducing “A” Segregates in Steel Ingots. Transactions of the Iron and Steel Institute of Japan. 21(4), 235-242.
  • [6] Gandin, Ch. A., Rappaz, M., & Tintillier, R. (1994). Three Dimensional Simulation of the Grain Formation in Investment Casting. Metallurgical Transactions. 25A, 629-641.
  • [7] Gandin, Ch.A. (2000). From Constrained to Unconstrained Growth during Directional Solidification. Acta Materialia. 48, 2483-2501.
  • [8] Szajnar, J. (2004). The Columnar Crystals Shape and Castings Structure Cast in Magnetic Field. Journal of Materials Processing Technology. 157/158, 761-764.
  • [9] Martorano, M.A., Beckerman, C., & Gandin, Ch, A. (2004). Solutal Interaction Mechanism for Columnar-to-Equiaxed Transition in Alloy Solidification. Metallurgical and Materials Transactions. 35A, 1915-1922.
  • [10] Billia, B., Gandin, Ch.A., Zimmerman, G., Browne, D.J, & Dupouy, M. (2005). Columnar – Equiaxed Transition in
  • Solidification Processing. Microgravity Science and Technology. 16, 290-298.
  • [11] Nguyen-Thi, H., Zhou, B.H., Reinhart, G., Billia, B., Liu, Q.S., Lan, C.W., Lyubimova, T., & Roux, B. (2006). Influence of Forced Convection on Columnar Microstructure during Directional Solidification of Al-Ni Alloys. Materials Science Forum. 508, 181-186.
  • [12] McFadden, S., Browne, D.J., & Banaszek, J. (2006). Prediction of the Formation of an Equiaxed Zone ahead of a Columnar Front in Binary Alloys Castings: Indirect and Direct Methods. Materials Science Forum. 508, 325-330.
  • [13] Szajnar, J., Stawarz, M., Wróbel, T. & Sebzda, W. (2009) Influence of Electromagnetic Field on Pure Metals and Alloys Structure. Journal of Achievements in Materials and Manufacturing Engineering. 34, 95-102.
  • [14] McFadden, S., Browne, D.J., & Gandin, Ch.A. (2009). A Comparison of CET Prediction Methods using Simulation of the Growing Columnar Front. Metallurgical Transactions. 40A, 662-672.
  • [15] Konozsy, L., Ishmurzin, A., Grasser, M., Wu, M.H., Ludwig, A., Tanzer, R, & Schutzenhofer, W. (2010). Columnar to Equiaxed Transition during Ingot Casting using Ternary Alloy Composition. Materials Science Forum. 649, 349-354.
  • [16] Cholewa, M., Wróbel, T., & Tenerowicz, S. (2010). Bimetallic Layer Castings. Journal of Achievements in Materials and Manufacturing Engineering. 43, 385-392.
  • [17] Lorbiecka, A.Z., & Sarler, B. (2010). Simulation of Dendritic Growth with Different Orientation by Using the Point Automata Method. Computers, Materials and Continua. 18(1), 69-103.
  • [18] Miyata, Y. (2010). Morphological Transition in High Growth Rate in Constrained Solidification. Materials Science Forum. 649, 255-262.
  • [19] McFadden, S., Browne, D.J., Sturz, L., & Zimmermann, G. (2010). Analysis of a Microgravity Experiment for Columnar to Equiaxed Transitions with Modeling Results. Materials Science Forum. 649, 361-366.
  • [20] Wróbel, T. (2011). Bimetallic Layered Castings Alloy Steel - Grey Cast Iron, Archives of Materials Science and Engineering. 48, 118-125.
  • [21] Zimmermann, G., Sturz, L., Billia, B., Mangelinck-Noel, N., Liu, D.R., Nguyen-Thi, H., Bergeon, N., Gandin, Ch.A., Browne, D.J., Beckermann, Ch., Tourret, D., & Karma, A. (2014). Columnar-to-Equiaxed Transition in Solidification Processing of AlSi7 Alloys in Microgravity – CETSOL Project. Materials Science Forum. 790/791, 12-21.
  • [22] Zyska, A., Konopka, Z. Łągiewka, M., & Nadolski, M. (2016). Modelling of the Dendritic Crystallization by the Cellular Automaton Method. Archives of Foundry Engineering. 16(1) 99-106.
  • [23] Ivanova, A.A. (2009). Dynamika Tiemperaturnych Gradientow Nieprerywnolitogo Slitka, Metallurgicheskije Processy i Oborudovanije. 2(16), 7-12 (in Russian).
  • [24] Ivanova, A.A. (2012). Calculation of Phase Change Boundary Position in Continuous Casting. Archives of Foundry Engineering. 13(4), 57-62.
  • [25] Umeda, T. (1997). Heat, Mass and Microstructure Simulation of Continuous Casting. Proceedings of 7-th International Symposium on Physical Simulation, Tsukuba, Japan, June 3-7, 64-75.
  • [26] M’Hamdi, M., Bobadilla, M., Combeau, G., & Lesoult, G. (1998). Numerical Modeling of the Columnar to Equiaxed Transition in Continuous Casting of Steel. Modelling of Casting, Welding and Advanced Solidification Process VIII, Proceedings of the VIII-th Conference on Modeling of Casting, Welding and Advanced Solidification, San Diego, California, USA, June 7-12, 1998, Thomas, B.G. Beckerman, Ch., Eds., T.M.S., Warrendale, Pennsylvania, 375.
  • [27] Majchrzak, E., Mochnacki, B., Dziewoński, M. & Jasiński, M. (2008). Identification of Boundary Heat Flux on the Continuous Casting Surface. Archives of Foundry Engineering. 8(4), 105-110.
  • [28] Telejko, T., Malinowski, Z. & Rywotycki, M. (2009). Analysis of Heat Transfer and Fluid Flow in Continuous Steel Casting. Archives of Metallurgy and Materials. 54, 837-844.
  • [29] Lorbiecka, A. & Sarler, B. (2010). A Sensitivity Study of Grain Growth Model for Prediction of ECT/CET Transformations in Continuous Steel Casting. Materials Science Forum. 649, 373-378.
  • [30] Stetina, J., Kavicka, F., & Mauder, T. (2011). Numerical Model of Heat Transfer and Mass Transfer during Solidification of Concasting Steel. Proceedings of the ASME/JSME 8-th Thermal Engineering Joint Conference - AJTEC, Honolulu, Hawaii, USA, March 13-17, Eds. ASME/JSME Conference CD, AJTEC-44031, 2.1.
  • [31] Lipnicki, Z. & Weigand, B. (2011). Influence of Thermal Boundary Layer on the Contact Layer between Liquid and a Cold Plate in a Solidification Process. Heat and Mass Transfer. 47, 1629-1635.
  • [32] Lipnicki, Z. & Pantoł, K. (2015). Role of a Continuous Casting Forms on the Shape of the Solidified Crust. Archives of Metallurgy and Materials. 60(4), 2553-2557.
  • [33] Burbelko, A., Falkus, J., Kapturkiewicz, W., Sołek, K., Drożdż, P., & Wróbel, M. (2012). Modeling of the Grain Structure Formation in the Steel Continuous Ingot by CAFE Method. Archives of Metallurgy and Materials. 57, 379-384.
  • [34] Tkadlečkova, M., Valek, L., Socha, L., Saternus, M., Pieprzyca, J., Merder, T., Michalek, K., & Kovac, M. (2016). Study of Solidification of Continuously Cast Steel Round Billets using Numerical Mode. Archives of Metallurgy and Materials. 61(1), 221-226.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89421a57-67ab-4bdc-abb4-8ee2027600e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.