PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast and cost efficient measuring of geometry and temperature for open-die forging

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In open-die forging it is state of the art to use simulation tools for creating forging plans and setpoint values for the forging press and the automated part manipulator. These forging plans define required positions and forces. Therefore, the process can be fully automated. However, even small variations of not considered influence parameters lead to different forging results and thus to a discontinuous process. Influencing factors are, e.g. material parameter deviations, uncertainties in force measurements or variations in the part temperature due to varying environmental conditions. This paper presents an approach for a fully automatic open-die forging process with respect to actual conditions, based on a parallel measurement of the workpiece geometry and temperature and a “process-real-time” adaptation on the controller system. The focus of this work is the development of a measuring strategy and an according sensor setup for the combined temperature and geometry measurement of the workpiece. In addition, the structure, the characteristic features of the components and the beam path of the sensors scanning units are shown. Furthermore, first experimental results for the alignment of the beam path are presented. In the outline, the setup and calibration strategy of the measurement system are stated.
Rocznik
Strony
82--93
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
autor
  • Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
  • Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
  • Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
  • Institute of machine Tools and Control Engineering (IMD), Dresden, Germany
Bibliografia
  • [1] VOLZ H.U., 2013, Massivumformung kurz und bündig, Öffentlichkeitsarbeit/Technische Information des Industrieverbandes Massivumformung e. V. 58093 Hagen.
  • [2] KANTHAK P., 2014, Basiswissen: Massivumformteile – Bedeutung, Gestaltung, Herstellung, Anwendung, Industrieverband Massivumformung e.V., 58093 Hagen, Deutschland.
  • [3] DOEGE E., BEHRENS B.A., 2010. Handbuch Umformtechnik, Springer-Verlag Berlin-Heidelberg,
  • [4] BACK A., 2018, FE-Simulation von Prozessketten mit Berücksichtigung der Mikrostrukturentwicklung, Massiv Umformung, September, 36–41.
  • [5] ZIENKIEWICZ O.C., 1971, The Finite Element Method in engineering science, McGraw-Hill Companies, London.
  • [6] HAWRYLUK M., ZIEMBA J., SADOWSKI P., 2017, A Review of Current and New Measurement Techniques Used in Hot Die Forging Processes, Measurement and Control, 50/3, 74–86.
  • [7] FRANZKE M., RECKER D., HIRT G. 2008. Development of a Process Model for Online-Optimization of Open Die Forging of Large Workpieces. Steel Research Int., 79/10, 753–757.
  • [8] HADALA B., 2013. Implementation of the heat balance in the finite element solution to the temperature field of the plastically deformed material, International Journal of Thermal Sciences, 71, 172–181.
  • [9] CIANCIO C., CITREA T., AMBROGIO G., FILICE L., MUSMANNO R., 2015, Design of a high performance predictive tool for forging operation, Procedia CIRP, 33, 173–178.
  • [10] POLAKOVA I., DUCHEK M., MALENCEK L., 2014, FEM simulation of open die forging of a plate from material NIMONIC 80A in DEFORM 3D, Archives of Materials Science and Engineering, 66/1, 31–36.
  • [11] PIESOVA M., CZAN A., 2014, Impact of temperature on cooling structural variation of forging dies, Technological Engineering, 11/2, 20–23.
  • [12] KOLMOGORTSEV I.V., LEDOVSKIKH E.V., OSIPOV S.A., SHMAKOV A.K., 2016, Analysis of the thermal state of a semifinished product during hot die forging, Metallurgist, 59, 1157–1162.
  • [13] KELLOW M.A., BRAMELY A.N., BANNISTER F.K., 1969, The measurement of temperatures in forging dies, Int. J. Mach. Tool Des. Res., 9, 239–260.
  • [14] Optris GmbH, 2018, https://www.optris.de/ct-1m2m (Accessed: 21-12-2018).
  • [15] Comtes FHT, 2018, https://www.comtesfht.de/umformtechnik (Accessed: 21-12-2018).
  • [16] Optris GmbH, 2018, Grundlagen der berührungslosen Temperaturmessung, https://www.optris.de/infrarot-kamera-pi200?file=tl_files/pdf/Downloads/Infrarotkamera/Optris%20IR%20Kamerabrosch%C3%BCre.pdf, (Accessed: 21-12-2018).
  • [17] Karlsruher Institut für Technologie, 2019, Infrarot-Thermografie, http://psi.physik.kit.edu/309.php (Accessed: 26-06-2019).
  • [18] FU X., LIU B., ZHANG Y., 2013., Measurement technology of the hot-state size for heavy shell ring forging, Int. J. Adv. Manuf. Technol., 65, 543–548.
  • [19] Optris GmbH, 2018, http://www.optris.de/infrarotkamera-optris-pi-450-g7 (Accessed: 21-12-2018).
  • [20] Optris GmbH, 2018, https://www.optris.de/infrarotkamera-optris-pi-1m (Accessed: 21-12-2018).
  • [21] Sensortherm, 2018, https://www.sensortherm.de/userfiles/file/datenblaetter-/de/Sensortherm-Produktuebersicht_Pyrometer.pdf (Accessed: 21-12-2018).
  • [22] ZHU J., LI M., JIANG Y., XIE T., LI F., et al., 2017, Research on online 3D laser scanner dimensional measurement system for heavy high-temperature forgings, Applied Optics and Photonics China (AOPC2017), doi:10.1117/12.2285764.
  • [23] BOKHABRINE Y., YAN VOON L., SEULIN R., GORRIA P., GOMEZ M., JOBARD D., 2009, 3D reconstruction of hot metallic surfaces for industrial part characterization, Proc. SPIE 7251, Image Processing: Machine Vision Applications II, doi:10.1117/12.806015.
  • [24] TIAN Z., GAO F., JIN Z., ZHAO X., 2008, Dimension measurement of hot large forgings with a novel time-of-flight system, Int. J. Adv. Manuf. Technol., 44, 125–132.
  • [25] BOKHABRINE Y., SEULIN R., YAN VOON L., GORRIA P., GIRARDIN G., GOMEZ M., JOBARD D., 2010, 3D characterization of hot metallic shells during industrial forging, Machine Vision and Application, 23, 417–425, doi:10.1007/s00138-010-0297-5.
  • [26] Ferrotron, 2019, https://www.mineralstech.com/business-segments/minteq/ferrotron/laser-profile-products/die-la cam-produktlinie (Accessed: 10-06-2019).
  • [27] LIU Y., LIU W., WANG L., XU P., FAN C., DING L., JIA Z., 2007, An Improved Measurement Method of Large Hot Forgings Based on Laser-aided Multi-view Stereo Vision, IEEE Santa Clara, CA, USA, DOI: 10.1109/ISIE.2016. 7745008.
  • [28] WANG B., LIU W., JIA Z., LU X., SUN Y., 2010, Dimensional measurement of hot, large forgings with stereo vision structured light system, Proc. IMechE Part B: J. Engineering Manufacture, 225, 901–908. doi:10.1177/2041297510393513.
  • [29] LIU W., JIA Z., WANG F., MA X., WANG W., JIA X., SONG D., 2012, An improved online dimensional measurement method of large hot cylindrical forging, Measurement, 45, 2041–2051.
  • [30] ZHANG Y., HAN J., FU X., LIN H., 2014, An online measurement method based on line laser scanning for large forgings, Int. J. Adv. Manuf. Technol., 70, 439–448.
  • [31] FAN C., LIU W., XU P., LIU Y., YANG J., 2016, Image processing in dimensional measurement for hot large forgings based on laser-aided binocular machine vision system, Eighth International Conference on Digital Image Processing, doi:10.1117/12.2244159.
  • [32] LIU Y., LIU W., WANG L., XU P., FAN C., DING L., JIA Z., 2016, An Improved Measurement Method of Large Hot Forgings Based on Laser-aided Multi-view Stereo Vision, IEEE Santa Clara, CA, USA, doi: 10.1109/ISIE.2016.7745008.
  • [33] BRACUN D., SKULJ G., KADIS M., 2017, Spectral selective and difference imaging laser triangulation measurement system for om line measurement of large hot workpieces in precision open die forging, Int. J. Adv. Manuf. Technol., 917–926.
  • [34] BEERMANN R., QUENTIN L., STEIN G., REITHMEIER E., KÄSTNER M., 2018, Full simulation model for laser triangulation measurement in an inhomogeneous refractive index field, Optical Engineering, 57/11. doi:10.1117/1.OE.57.11.114107.
  • [35] HAN L., CHENG X., LI Z., ZHONG K., SHI Y., JIANG H., 2018, A Robot-Driven 3D Shape Measurement System for Automatic Quality Inspection of Thermal Objects on a Forging Production Line, Sensors, 18/12. doi:10.3390/s18124368.
  • [36] ZHOU Y., WU Y., LUO C., 2018, A fast dimensional measurement method for large hot formings based line reconstruction, Int. J. Adv. Manuf. Technol., 99, 1713–1724.
  • [37] ZHENGCHUN D., ZHAOYONG W., JIANGUO Y., 2016, 3D measuring and segmentation method for hot heavy forging, Measurement, 85, 43–53.
  • [38] Aerotech Inc., 2018, Complete product data sheet – AMG LP Series, https://www.aerotech.com/media/3198828/amg-lp-series-data-sheet.pdf, (Accessed: 21-06-2019).
  • [39] Canon U.S.A. Inc.: 2019, Optoelectronic-Products, https://www.usa.canon.com/internet/portal/us/home/products/groups/optoelectronic-products, (Accessed: 26-06-2019).
  • [40] Leica Geosystems AG., 2019, Leica BLK360, https://leicageosystems.com/media/Images/LeicaGeosystems/Thumbnails%20800x428/Product%20Thumbnails/BLK360_Prieview_Thumb_800x428.ash, (Accessed: 26-06-2019).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8941105a-1afc-48ca-a8bd-b66399a36358
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.