PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Lumped Parameter Analysis of Bridge Wire in an Electro Explosive Device of a Power Cartridge for Water-Jet Application: A Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In an armament system an electro-explosive device (EED) essentially converts electrical energy into heat which further initiates the explosive train with its accompanying temperature rise. The first function of an EED in a power cartridge is to provide adequate electrical current to cause ignition of the highly sensitive explosive i.e. lead styphnate. The electrical current accomplishes ignition by heating the bulb of lead styphnate which produces enough heat to cause the booster to ignite. The booster which is in the immediate vicinity augments the ignition of the propellant further. The igniter must be held firmly in place with the booster in the tube. Understanding of the initiation of explosives using a bridge wire in EEDs is important for engineers, designers and scientists to develop new theories. In this research article, theoretical and experimental work has been reported pertaining to bridge wire devices in power cartridges for water-jet applications. The objective of the present research work is to use lumped parameter analysis of a bridge wire in an electro explosive device of a power cartridge for water-jet application. A lumped parameter theory is proposed for the analysis of EEDs. A time constant of 3.35 s has been determined using the lumped parameters. The Biot number is less than 0.1 indicating that transient phenomenon is applied.
Rocznik
Strony
408--427
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Armament Research & Development Institute (ARDE), Pune-411 021, India
  • Defence Institute of Advanced Technology (DIAT), Near Khadakwasla Dam, Girinagr, Pune-411 025, India
  • High Energy Material Research Laboratory (HEMRL), Sutarwadi, Pune-411 021, India
Bibliografia
  • [1] Han, Z.Y.; Zhang, Y.P.; Du, Z.M.; Li, Z.Y.; Yao, Q.; Yang, Y.Z. The Formula Design and Performance Study of Gas Generators based on 5-Aminotetrazole. J. Energ. Mater. 2017, 36(1): 61-68.
  • [2] Parate, B.A.; Salkar, Y.B.; Chandel, S.; Shekhar, H. A Novel Method for Dynamic Pressure and Velocity Measurement Related to a Power Cartridge Using a Velocity Test Rig for Water-Jet Disruptor Applications. Cent. Eur. J. Energ. Mater. 2019, 16(3): 319-342.
  • [3] Kosanke, K.L.; Kosanke, B.J. Electric Matches and Squibs. In: Selected Pyrotechnic Publications. 2013, pp. 257-259; ISBN 978-1889526300.
  • [4] Safety Principles for Electrical Circuits in Systems Incorporating Explosive Components, Part 2 Electro-Explosive Devices and their Characterization. Ministry of Defence Standard 59-114, Issue 1, 2012.
  • [5] Chen, F.M. Pyrotechnics’ Principle and Design. Weapons Industry Press, Beijing, 1990.
  • [6] Moses, S.A. Electro Explosive Devices in Aerospace Vehicle System. Trans. Aerosp. Electron. Syst. 1966, 2(4): 51-56.
  • [7] Parate, B.A.; Chandel, S.; Shekhar, H. An Experimental and Numerical Approach – Characterisation of Power Cartridge for Water-jet Application. Def. Technol. 2018, 14(6): 683-690.
  • [8] Parate, B.A.; Chandel, S.; Shekhar, H.; Mahto, V. Experimental and Theoretical Determination of Water-Jet Velocity for Disruptor Application Using High Speed Videography. Problems of Mechatronics Armament, Aviation, Safety Engineering 2019, 10/2(36): 23-41.
  • [9] Kondakov, I.V.; Loboiko, B.G.; Pestrechikhin, V.A. Explosive Materials Combustion by Heated Wires. Def. Sci. J. 1999, 49(3): 269-273.
  • [10] Shukla, P.; Deepu, M. Experimental and Numerical Investigations of Thermal Ignition of a Phase Changing Energetic Material. Def. Sci. J. 2016, 66(3). 228-235.
  • [11] Kumar, R.; Kumar, P.; Singh, N. Design of Integrated SCB Chip for Explosive Initiation. International Journal of Scientific and Research Publications 2014, 4(3).
  • [12] Jang, S.; Du, S.; Li, D.; Pinilla, N.; Gebre, B.A.; Pochiraju, K.; Manoochehri, S. Electrothermal Analysis of Micro/Nano Wire Initiators for Energy Production Applications. Power MEMS, Washington DC, USA, 2009, pp. 451-454.
  • [13] de Carvalho Faria, P.C.; Iha, K; Fritz Fidel Rocco, F.A. An Analysis of the Initiation Process of Electro Explosive Devices. J. Aero. Technol. Manage. Lond. 2012, 4(1):45-50.
  • [14] Kwan Chan, S.; Turcotte, R. Onset Temperatures in Hot Wire Ignition of AN-based Emulsions. Propellants, Explos., Pyrotech. 2009, 34(1): 41-49.
  • [15] Rosenthal, L.A. Electro-Thermal Equations for Electro Explosive Devices. NAVORD Report 6684, AD 230917, 1959.
  • [16] Rosenthal L.A. Electro Thermal Measurements of Bridge Wires Used in Electro Explosive Devices. IEEE Trans. Instrum. Meas. 1963.
  • [17] Electro-thermal Equations for Electro-Explosive Devices. Explosions Research Department, U.S. Naval Ordnance Laboratory, Nav Ord Report 6684, White Oak, Maryland, 1964.
  • [18] Jones, E. The Ignition of Solid Explosive Media by Hot Wires. Proc. R. Soc. Lond. A 1949, 198: 523-539.
  • [19] Arora, S.C.; Domkundwar, S.; Domkundwar, A.V. A Course in Heat and Mass Transfer. 8th rev. ed., Dhanpat Rai and Co. (P) Ltd., New Delhi, 2013, Edition 2001-02, Chapter 8, pp. 8.1-8.3.
  • [20] Virendra, K.; Muthurajan, H.; Ghodke, C.B. Software for All/No Fire, Current Computation for Electro Explosive Devices. Int. Pyrotech. Semin., 31st, Proc. 2004, 481-490.
  • [21] Kosanke, K.L.; Kosanke, B.J. Electric Matches and Squibs. American Fireworks News 1994, 150.
  • [22] Mishra, K.K.; Babu, A.S.; Shetty, C.P.; Shekhar, H. Method to Determine the Electrical Energy for Ignition of Electro-Explosive Devices. J. Aerospace Technical Manage. 2015, 7(3): 285-288.
  • [23] Neyer, B.T.; Gageby, J. ISO 14304 Annex B All Fire/No Fire Test and Analysis Methods. Symp. Explos. Pyrotech., 17th, Proc., Essington, PA, 1999.
  • [24] Parate, B.A. Development and Qualification Testing of Pyro-cartridge for Signal Cartridge Application, J. Pyrotech. 2020, 11-21.
  • [25] Khan, A.; Quadeer Malik, A.; Lodhi, Z.H. Development and Study of High Energy Igniter/Booster Pyrotechnic Compositions for Impulse Cartridges. Cent. Eur. J. Energ. Mater. 2017, 14(4): 933-951.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89406d69-8394-4ea9-86cb-ac679cf5fa22
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.