PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of thermal modification on some physical and mechanical properties of yellow poplar (liriodendron tulipifera)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Thermal modification is a treatment method used to improve some properties of wood in order to expand its range of usage and extend its lifetime. Although it generally causes a worsening of mechanical properties, some of them can change due especially to lower equilibrium moisture content when compared with untreated wood. Therefore, we wanted to compare some properties of thermally modified and untreated samples having either the same moisture contents or those of the area of use. For this purpose, we tested untreated and thermally modified (at 180° C for 3 hours) yellow poplar (Liriodendron tulipifera) solid wood samples. We investigated density, swelling and shrinkage ratios, and anisotropy of shrinkage as physical properties, and compression and bending strength, modulus of elasticity and impact bending as mechanical properties, according to the relevant ISO standards. The results showed that thermal modification increased the dimensional stability while having a negative impact on the mechanical properties (except modulus of elasticity) at the same moisture content, as indicated in the literature. However, thermally modified samples with moisture content as in the area of use exhibited improved properties (except in the case of impact bending).
Rocznik
Strony
art. no. 1644--3985.380.01
Opis fizyczny
Bibliogr. 50 poz., fot., tab.
Twórcy
autor
  • İstanbul University-Cerrahpaşa, Faculty of Forest, Department of Forestry Industrial Engineering, İstanbul, Turkey
  • İstanbul University-Cerrahpaşa, Faculty of Forest, Department of Forestry Industrial Engineering, İstanbul, Turkey
Bibliografia
  • Almeida G., Brito J.O., Perre P. [2009]: Changes in wood-water relationship due to heat treatment assessed on micro-samples of three Eucalyptus species. Holzforschung 63 [1]: 80-88. doi: 10.1515/hf.2009.026
  • As N., Dündar T., Büyüksarı Ü. [2016]: Classification of wood species grown in Turkey according to some physico-mechanic properties (in Turkish). Journal of the Faculty of Forestry Istanbul University 66 [2]: 727-735. doi: 10.17099/jffiu.93670
  • Atlanta Hardwoods [2018]: Atlanta Hardwood Corporation expands, adding thermally modified wood production capacity, http://www.hardwoodweb.com/wp/atlanta-hardwood-corporation-expands-adding-thermally-modified-wood-production-capacity/ [accessed: 23.12.2020]
  • Beck D.E. [1990]: Liriodendron tulipifera L. Yellow-poplar. Silvics of North America 2: 406--416
  • Bekhta P., Niemz P. [2003]: Effect of high temperature on the change in color, dimensional stability and mechanical properties of spruce wood. Holzforschung 57 [5]: 539-546. doi: 10.1515/hf.2003.080
  • Boonstra M.J., Van Acker J., Tjeerdsma B.F., Kegel E.V. [2007]: Strength properties of thermally modified softwoods and its relation to polymeric structural wood constituents. Annals of Forest Science 64: 679-690. doi: 10.1051/forest:2007048
  • Brito A.F., Calonego F.W., Bond B.H., Severo E.T.D. [2018]: Color changes, EMC and biological resistance of thermally modified yellow poplar. Wood and Fiber Science 50 [4]: 439-446. doi: 10.22382/wfs-2018-055
  • Buchanan M.A., Dickey E.E. [1960]: Liriodenine, A Nitrogen-Containing Pigment of Yellow Poplar Heartwood (Liriodendron tulipifera L.). The Journal of Organic Chemistry 25 [8]: 1389-1391. doi: 10.1021/jo01078a024
  • Candan Z., Büyüksarı U., Korkut S., Unsal O., Çakıcıer N. [2012]: Wettability and surface roughness of thermally modified plywood panels. Industrial Crops and Products 36: 434--436. doi: 10.1016/j.indcrop.2011.10.010
  • Cockrell R.A. [1974]: A comparison of latewood pits, fibril orientation, and shrinkage of normal and compression wood of giant sequoia. Wood Science and Technology 8 [3]: 197--206. doi: 10.1007/bf00352023
  • Esteves B., Marques A.V., Domingos I., Pereira H. [2007]: Influence of steam heating on the properties of pine (Pinus pinaster) and eucalypt (Eucalyptus globulus) wood. Wood Science and Technology 41 [3]: 193. doi: 10.1007/s00226-006-0099-0
  • Esteves B., Pereira H. [2009]: Wood modification by heat treatment: A review. BioResources 4 [1]: 370-404. doi: 10.15376/biores.4.1.370-404
  • Faust T.D., McAlister R.H., Zarnoch S.J. [1990]: Strength and stiffness properties of sweetgum and yellow-poplar structural lumber. Forest Products Journal 40 [10]: 58-64
  • Gaff M., Kačík F., Gašparík M. [2019]: Impact of thermal modification on the chemical changes and impact bending strength of European oak and Norway spruce wood. Composite Structures 216: 80-88
  • Giebeler E. [1983]: Dimensional stabilization of wood by moisture-heat-pressure-treatment. Holz als Roh-und Werkstoff, 41 [3]: 87-94
  • Godinho D., Araújo S.D.O., Quilhó T., Diamantino T., Gominho J. [2021]: Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests 12, 1400
  • IBM SPSS Statistics for Windows, version 21.0 Spss. 2019. New York, NY: IBM Corp
  • Korkut S., Akgül M., Dündar T. [2008]: The effects of heat treatment on some technological properties of Scots pine (Pinus sylvestris L.) wood. Bioresource Technology 99 [6]: 1861--1868
  • Korkut S., Korkut D.S., Kocaefe D., Elustondo D., Bajraktari A., Çakıcıer N. [2012]: Effect of thermal modification on the properties of narrow-leaved ash and chestnut. Industrial Crops and Products 35 [1]: 287-294
  • Kollmann F.P., Côté W.F. [1984]: Solid wood. Principles of Wood Science and Technology. Reprint Springer-Verlag, Tokyo, 1, 180
  • Mayes D., Oksanen O. [2002]: Thermowood Handbook, Finnforest, Finland
  • Metsä-Kortelainen S., Antikainen T., Viitaniemi P. [2006]: The water absorption of sapwood and heartwood of Scots pine and Norway spruce heat-treated at 170 °C, 190 °C, 210 °C and 230 °C. Holz als Roh-und Werkstoff 64 [3]: 192-197
  • Mitsui K., Murata A., Tolvaj L. [2004]: Changes in the properties of light-irradiated wood with heat treatment: Part 3. Monitoring by DRIFT spectroscopy. Holz als Roh-und Werkstoff 62 [3]: 164-168
  • Möttönen V., Bütün Y., Heräjärvi H., Marttila J., Kaksonen H. [2015]: Effect of combined compression and thermal modification on mechanical performance of aspen and birch wood. Pro Ligno 11 [4]: 310-317
  • Northland Forest Products [2018]: Cambia: What is thermally modified wood. https://cambiawood.com/about-our-wood/thermally-modified-wood [accessed: 23.12.2020]
  • Poncsák S., Kocaefe D., Bouazara M., Pichette A. [2006]: Effect of high temperature treatment on the mechanical properties of birch (Betula papyrifera). Wood Science and Technology 40 [8]: 647-663
  • Rahimi S., Singh K., DeVallance D. [2019]: Effect of different hydrothermal treatments (steam and hot compressed water) on physical properties and drying behavior of yellow-poplar (Liriodendron tulipifera). Forest Products Journal 69 [1]: 42-52
  • Ross R.J. [2010]: Wood handbook: wood as an engineering material. USDA Forest Service, Forest Products Laboratory, General Technical Report FPL-GTR-190, Madison, WI: U.S. Department of Agriculture, Forest Service, 508P. doi: 10.2737/fpl-gtr-190
  • Sailer M., Rapp A.O., Leithoff H., Peek R.D. [2000]: Upgrading of wood by application of an oil-heat treatment. Holz als Roh-und Werkstoff 58 [1/2]: 15-22. doi: 10.1007/s001070050379
  • Salca E.A., Hiziroglu S. [2014]: Evaluation of hardness and surface quality of different wood species as function of heat treatment. Materials & Design (1980-2015) 62: 416-423. doi: 10.1016/j.matdes.2014.05.029
  • Shi J.L., Kocaefe D., Zhang J. [2007]: Mechanical behaviour of Quebec wood species heat-treated using ThermoWood process. Holz als Roh-und Werkstoff 65 [4]: 255-259 doi: 10.1007/s00107-007-0173-9
  • Singh K., Sivanandan L. [2014]: Changes in wood during mild thermal decay and its detection using ATR-IR: a review. Journal of Agricultural Science and Applications 3 [1]: 1-7. doi: 10.14511/jasa.2014.030101
  • Sundqvist B, Morén T. [2002]: The influence of wood polymers and extractives on wood colour induced by hydrothermal treatment. European Journal of Wood and Wood Products 60 [5]: 375-376. doi: 10.1007/s00107-002-0320-2
  • Todorović N., Popović Z., Milić G., Veizović M., Popadić R. [2020]: Quality evaluation of heat-treated sessile oak (Quercus petraea L.) wood by colour and FT-NIR spectroscopy. Wood Material Science & Engineering 1-8. doi: 10.1080/17480272.2020.1847188
  • Ülker O., Aslanova F., Hiziroglu S. [2018]: Properties of Thermally Treated Yellow Poplar, Southern Pine, and Eastern Redcedar. BioResources 13 [4]: 7726-7737. doi: 10.15376/biores.13.4.7726-7737
  • Unsal, O., Ayrilmis, N. [2005]: Variations in compression strength and surface roughness of heat-treated Turkish river red gum (Eucalyptus camaldulensis) wood. Journal of Wood Science 51 [4]: 405-409. doi: 10.1007/s10086-004-0655-x
  • Vick C.B. [1985]: Yellow-poplar (Liriodendron tulipifera L.) an American Wood. United States Department of Agriculture FS-272
  • WoodDatabase [2020]: Dimensional Shrinkage the Wood Database https://www.wood-database.com/wood-articles/dimensional-shrinkage/ [accessed: 23.12.2020]
  • Yildiz S., Yildiz U.C., Tomak E.D. [2011]: The effects of natural weathering on the properties of heat-treated alder wood. BioResources 6: 2504–2521
  • List of standards
  • ISO 13061–1:2014 Physical and mechanical properties of wood – test methods for small clear wood specimens – Part 1: Determination of moisture content for physical and mechanical tests
  • ISO 13061–2:2014 Physical and mechanical properties of wood – test methods for small clear wood specimens – Part 2: Determination of density for physical and mechanical tests
  • ISO 13061–3:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 3: Determination of ultimate strength in static bending
  • ISO 13061–4:2014 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 4: Determination of modulus of elasticity in static bending
  • ISO 13061–10:2017 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 10: Determination of impact bending strength
  • ISO 13061–13:2016 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 13: Determination of radial and tangential shrinkage
  • ISO 13061–14:2016 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 14: Determination of volumetric shrinkage
  • ISO 13061–15:2016 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 15: Determination of radial and tangential swelling
  • ISO 13061–16:2016 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 16: Determination of volumetric swelling. Physical and mechanical properties of wood – test methods for small clear wood specimens – Part 1: Determination of moisture content for physical and mechanical tests
  • ISO 13061–17:2017 Physical and mechanical properties of wood – Test methods for small clear wood specimens – Part 17: Determination of ultimate stress in compression parallel to grain
  • TS 2595:1977 Paper – Determination of bursting strength
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-893c4a7e-d8e4-4dc0-bd90-c47dd6141938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.