Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper considers a manpower system modelled within the Markov chain context under the condition that recruitment is doneto replace outgoing flows. The paper takes up the embeddability problem in a three-grade manpower system and examines it from the standpoint of generating function (i.e., the z-transform of stochastic matrices). The method constructs a stochastic matrix that is made up of a limiting-state probability matrix and a partial sum of transient matrices. Examples areprovided to illustrate the utility of the method.
Czasopismo
Rocznik
Tom
Strony
5--17
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Department of Computer Science & Information Technology, Igbinedion University, Okada, NIGERIA
autor
- Department of Statistics, University of Benin, Benin City, NIGERIA
autor
- Department of Mathematics, University of Benin, Benin City, NIGERIA
Bibliografia
- [1] D.J. Bartholomew, A.F. Forbes, S.I. McClean, Statistical Techniques for Manpower Planning, 2nd edn. John Wiley & Sons, Chichester, 1991.
- [2] M.O. Cacéres, I. Cacéres-Saez, Random Leslie matrices in population dynamics, Journal of Mathematical Biology 63 (2011) 519–556.
- [3] V.U. Ekhosuehi, A control rule for planning promotion in a university setting in Nigeria, Croatian Operational Research Review 7 (2) (2016) 171–188.
- [4] M.-A. Guerry, Monotonicity property of t-step maintainable structures in three-grade manpower systems: a counterexample, Journal of Applied Probability 28(1) (1991) 221–224.
- [5] M.-A. Guerry, Properties of calculated predictions of grade sizes and the associated integer valued vectors. Journal of Applied Probability 34 (1) (1997) 94–100.
- [6] M.-A. Guerry, On the embedding problem for discrete-time Markov chains, Journal of Applied Probability 50 (4) (2013) 918–930.
- [7] M.-A. Guerry, T. De Feyter,Optimal recruitment strategies in a multilevel manpower planning model. Journal of the Operational Research Society 63 (2012),931–940. DOI: 10.10.1057/jors.2011.99.
- [8] Komarudin, M.-A. Guerry, G. Vanden Berghe, T. De Feyter, Balancing attainability, desirability and promotion steadiness in manpower planning systems, Journal of the Operational Research Society 66 (12) (2015) 2004-2014. DOI:10.1057/jors.2015.26.
- [9] K. Nilakantan, Evaluation of staffing policies in Markov manpower systems and their extension to organizations with outsource personnel, Journal of the Operational Research Society 66 (8) (2015) 1324–1340. DOI:10.1057/jors.2014.82.
- [10] A. A. Osagiede, V.U. Ekhosuehi, Finding a continuous-time Markov chain via sparse stochastic matrices in manpower systems, Journal of the Nigeria Mathematical Society 34 (2015) 94–105.
- [11] B. Singer, S. Spilerman, The representation of social processes by Markov models, American Journal of Sociology 82 (1) (1976) 1–54.
- [12] G.M. Tsaklidis, The evolution of the attainable structures of a continuous time homogeneous Markov system with fixed size, Journal of Applied Probability 33(1) (1996) 34–47.
- [13] A.U. Udom, Optimal controllability of manpower system with linear quadratic performance index, Brazilian Journal of Probability and Statistics 28 (2) (2014) 151–166.
- [14] S.H. Zanakis, M.W. Maret, A Markov chain application to manpower supply planning, Journal of the Operational Research Society 31 (12) (1980) 1095–1102
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89386f21-b031-4e85-9714-e255151fe514