Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the work was to develop a mathematical model for computing the steady-state voltage – current characteristics of a planar Solid Oxide Fuel Cell and to determine the performance of a new SOFC design. The design involves cross-flow bipolar plates. Each of the bipolar plates has an air channel system on one side and a fuel channel system on the other side. The proposed model was developed using the ANSYS-Fluent commercial Computational Fluid Dynamics (CFD) software supported by additional Fuel Cell module. The results confirm that the model can well simulate the diagonal current path. The effects of temperature and gas flow through the channels and a Membrane Electrode Assembly (MEA) structure were taken into account. It was shown that a significant increase of the MEA temperature at high current density can lead to hot spots formation and hence electrode damage.
Czasopismo
Rocznik
Tom
Strony
64--71
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
- 1. Ullah, K.R., Akikur, R.K., Ping, H.W., Saidur, R., Hajimolana, S.A. & Hussain, M.A. (2015). An experimental investigation on a single tubular SOFC for renevable energy based cogeneration system, Energy Conversion and Management 94, 139–149. DOI: 10.1016/j.enconman.2015.01.055.
- 2. Akhtar, N., Decent, S.P. & Kendall, K. (2010). Numerical modelling of methane-powered micro-tubular, single chamber solid oxide fuel cell, J. Pow. Sour. 195, 7796–7807. DOI: 10.1016/j.jpowsour.2010.01.084.
- 3. Yang, Y., Du, X., Yang, L., Huang, Y. & Xian, H. (2009). Investigation of methane steam reforming in planar porous support of solid oxide fuel cell, Appl. Therm. Eng. 29, 1106–1113. DOI: 10.1016/j.applthermaleng.2008.05.027.
- 4. Hussain, M., Li, X. & Dincer, I. (2009). A general electrolyte-electrode-assembly model for the performance characteristics of planar anode-supported solid oxide fuel cells, J. Pow. Sour. 189, 916–928, DOI: 10.1016/j.jpowsour.2008.12.121.
- 5. Andersson, M., Yuan, J. & Sunden, B. (2012). SOFC modeling considering electrochemical reactions at the active three phase boundaries, Inter. J. Heat Mass. Transfer 55, 773–777. DOI: 10.1016/j.ijheatmasstransfer.2011.10.032.
- 6. Goldin, G.M., Zhu, H., Kee, R.J., Bierschenk, D., Barnett, S.A. (2009). Multidimensional flow, thermal and chemical behavior in solid oxide fuel cell button cells, J. Pow. Sour. 187, 123–135. DOI: 10.1016/j.jpowsour.2008.10.097.
- 7. Shi, J. & Xue, X. (2012). Inverse estimation of electrode microstructure distributions in NASA Bi-electrode supported solid oxide fuel cells, Chem. Eng. J. 182, 607–613. DOI:10.1016/j.cej.2011.11.112.
- 8. Daneshvar, K., Dotelli, G., Cristiani, C., Pelosato, C. & Santarelli, M. (2014). Modelling and parametric study of a single solid oxide fuel cell by Finite Element Method, Fuel Cells. 14, 189–199. DOI: 10.1002/fuce.201300235.
- 9. Bertrei, A., Nucci, B. & Nicolella, C. (2013). Microstructural modeling for prediction of transport properties and electrochemical performance in SOFC composite electrodes, Chem. Eng. Sci. 101, 175–190. DOI: 10.1016/j.ces.2013.06.032.
- 10. Brus, G. & Szmyd, J.S. (2008). Numerical modelling of radiative heat transfer in an internal indirect reforming type SOFC, J. Pow. Sour. 181, 8–16. DOI: 10.1149/1.2779314.
- 11. Zitouni, B., Ben Moussa, H., Oulmi, K., Asighi, S. & Chetehouna, K. (2009). Temperature field, H2 and H2O mass transfer in SOFC single cell: electrode and electrolyte thickness effects, Inter. J. Hydrogen Energ., 34, 5032–5039. DOI: 10.1016/j.
- 12. Santarelli, M., Quesito, F., Novaresio, V., Guerra, C., Lanzini, A. & Beretta, D. (2013). Direct reforming of biogas on Ni-based SOFC anodes: Modelling of heterogeneous reactions and validation with experiments, J. Pow. Sour. 242, 405–414. DOI: 10.1016/j.jpowsour.2013.05.020.
- 13. Schluckner, C., Subotic, V., Lawlor, V. & Hochenauer, C. (2014). Three-dimensional numerical and experimental investigation of an industrial-sized SOFC fuelled by diesel reformat – Part I: creation of a base model for further carbon deposition modeling, Inter. J. Hydrogen Energ. 39, 19102–19118. DOI: 10.1016/j.ijhydene.2014.09.108.
- 14. Yuan, J. (2010). Simulation and analysis of multiscale transport phenomena and catalytic reactions in SOFC anodes Chem. Prod. Proc. Model 5, 1934–2659. DOI: 10.2202/1934-2659.1450.
- 15. Andersson, M., Yuan, J. & Sunden, B. (2010). Review on modeling development for multiscale chemical reactions coupled transport phenomena in solid oxide fuel cells. J. Appl. Energ. 87, 1461–1476. DOI: 10.1016/j.apenergy.2009.1.013.
- 16. Bi, W.X., Chen, D.F. & Lin, Z.J. (2009). A key geometric parameter for the flow uniformity in planar solid oxide fuel cell stacks, Int. J. Hydrogen Energ. 34, 3873–3884. DOI: 10.1016/j.ijhydene.2009.02.071.
- 17. Cui, D., Liu, L., Dong, Y. & Cheng, M. (2007). Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling J. Pow. Sour. 174, 246–254. DOI: 10.1016/j.powsourc.2007.08.094
- 18. Lin, B., Shi, Y., Ni, M. & Cai, N. (2015). Numerical investigation on impacts on fuel velocity distribution nonuniformity among solid oxide fuel cell units channels, Int. J. Hydrogen Energ. 40, 3035–3047. DOI: 10.1016/j.ijhydene.2014.12.088.
- 19. ANSYS Inc. ANSYS Fluent User’s guide, V15.0 (2015).
- 20. ANSYS Inc. ANSYS Fluent Fuel Cell Modules Manual, V15.0 (2015).
- 21. Pianko-Oprych, P., Kasilova, E. & Jaworski, Z. (2014). Quantification of the radiative and convective heat transfer processes and their effect on mSOFC by CFD modelling, Pol. J. Chem. Tech. 16, 2, 51–55. DOI: 10.2478/pjct-2014-0029.
- 22. Bossel, U. (2012). Rapid startup SOFC module, Energ. Proced. 28, 48–56. DOI: 10.1016/j.egypro.2012.08.039.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-893767b1-6f4b-4b1a-8b8a-0e59032f8816