PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhancing the properties of friction stir welded stainless steel joints via multi-criteria optimization

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An attempt is made to establish empirical relationships to predict the properties of friction stir welded stainless steel joints. The process parameters namely, rotational speed, welding speed and shoulder diameter and the properties such as tensile strength, notch tensile strength, impact toughness and degree of sensitization are considered. The investigated properties are correlated with the macrostructure and microstructural characteristics of different zones of FSW joints to understand the influence of process parameters. Multi-criteria optimization is used to obtain optimum welding conditions that can yield enhanced properties of FSW joints. The optimized results indicated that, the properties can be enhanced with the use of rotational speed of 441 rpm, welding speed of 118 mm/min, and shoulder diameter of 17.5 mm. This is mainly due to very fine stir zone grain structure in the order of 5.5 μm and the presence of thin layer of banded structure at the advancing side of fabricated joints under optimum parameters.
Rocznik
Strony
605--617
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Department of Mechanical Engineering, SSN College of Engineering, Kalavakkam 603110, Tamil Nadu, India
Bibliografia
  • [1] A. Scafe, A. Joaquin, Friction Stir Welding of Extruded Aluminum for Automotive Applications, SAE Technical Paper 2004-01-1333, 2004, http://dx.doi.org/10.4271/2004-01- 1333.
  • [2] D. Lohwasser, C. Zhan, Friction Stir Welding: Basics to Applications, Woodhead Publishing Limited, Abington Hall, Granta Park, Cambridge, UK, 2009.
  • [3] L. Cederqvist, T. Öbergc, Reliability study of friction stir welded copper canisters containing Sweden's nuclear waste, Reliability Engineering & System Safety 93 (10) (2008) 1491– 1499.
  • [4] W.M. Thomas, P.L. Threadgill, E.D. Nicholas, Feasibility of friction stir welding steel, Science and Technology of Welding and Joining 4 (6) (1999) 365–437.
  • [5] F. Michael, McGuire Stainless Steels for Design Engineers, 1st edition, ASM International, 2008.
  • [6] I. AghaAlia, M. Farzam, M. Ali Golozar, I. Danaee, The effect of repeated repair welding on mechanical and corrosion properties of stainless steel 316L, Materials and Design 54 (2014) 331–341.
  • [7] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Rapid formation of the sigma phase in 304 stainlesssteel during friction stir welding, Scripta Materialia 49 (2003) 1175–1180.
  • [8] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Corrosion resistance of friction stir welded 304 stainless steel, Scripta Materialia 51 (2004) 101–105.
  • [9] H. Kokawa, S.H.C. Park, Y.S. Sato, K. Okamoto, S. Hirano, M. Inagaki, Microstructures in friction stir welded 304 austenitic stainless steel, Welding in the World 49 (3/4) (2005) 34–40.
  • [10] T. Ishikawa, H. Fujii, K. Genchi, S. Iwaki, S. Matsuoka, K. Nogi, High speed–high quality friction stir welding of austenitic stainless steel, ISIJ International 49 (6) (2009) 897–901.
  • [11] N.A. Rodríguez, E. Almanza, M.D. Jesús Pérez, C. Rodrigo Muñiz, S. Packer, R. Steel, Analysis of sensitization phenomenon in friction stir welded, 304 stainless steel, Frontier in Materials Science of China 4 (4) (2010) 415–419.
  • [12] C. Meran, O.E. Canyurt, Joint strength of friction stir welded AISI 304 austenitic stainless steels, International Journal of Material Research 104 (12) (2013) 1197–1204.
  • [13] S. Sabooni, F. Karimzadeh, M.H. Enayati, A.H.W. Ngan, Friction-stir welding of ultrafine grained austenitic 304L stainless steel produced by martensitic thermomechanical processing, Materials and Design 76 (2015) 130–140.
  • [14] K. Young Gon, K. Ji Sun, K. In Ju, Effect of process parameters on optimum welding condition of DP590 steel by friction stir welding, Journal of Mechanical Science and Technology 28 (12) (2014) 5143–5148.
  • [15] A.K. Lakshminarayanan, V. Balasubramanian, Process parameters optimisation for friction stir welding of AISI 409M grade ferritic stainless steel, Experimental Techniques 37 (5) (2013) 59–73.
  • [16] T. Luz, J.P. Farias, P. Neto, Use of double loop electrochemical potentiokinetic reactivation (DL-EPR) to evaluate the sensitization of austenitic steels after welding, Welding International 20 (12) (2006) 959–964.
  • [17] K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, Multi-response optimization of CO2 laser-welding process of austenitic stainless steel, Optics & Laser Technology 40 (2008) 76–87.
  • [18] K. Ramanjaneylu, G. Madhusudhan Reddy, G. Hina, Optimization of process parameters of aluminium alloy AA 2014-T6 friction stir welds by response surface methodology, Defence Technology 11 (3) (2015) 209–219.
  • [19] M. Ghosh, K. Kumar, R.S. Mishra, Analysis of microstructural evolution during friction stir welding of ultrahigh-strength steel, Scripta Materialia 63 (8) (2010) 851–854.
  • [20] M. Hajian, A. Abdollah-Zadeh, S.S. Rezaei-Nejad, H. Assadi, S. M.M. Hadavi, K. Chung, M. Shokouhimeh, Microstructure and mechanical properties of friction stir processed AISI 316L stainless steel, Materials and Design 67 (2015) 82–94.
  • [21] Y.S. Sato, T.W. Nelson, C.J. Sterling, Recrystallization in type 304L stainless steel during friction stirring, Acta Materialia 53 (2005) 637–645.
  • [22] S.H.C. Park, Y.S. Sato, H. Kokawa, K. Okamoto, S. Hirano, M. Inagaki, Boride formation induced by pcBN tool wear in friction-stir-welded stainless steels, Metallurgical and Materials Transactions A 40A (2009) 625–636.
  • [23] Y.S. Sato, M. Muraguchi, H. Kokawa, Tool wear and reactions in 304 stainless steel during friction stir welding, Materials Science Forum 675–677 (2011) 731–734.
  • [24] R. Beltran, J.G. Maldonado, L.E. Murr, W.W. Fisher, Effects of strain and grain size on carbide precipitation and corrosion sensitization behavior in 304 stainless steel, Acta Materialia 45 (10) (1997) 4351–4360.
  • [25] L.V. Candiotia, M.M. De Zan, M.S. Cámara, H.C. Goicoeche, Experimental design and multiple response optimization. Using the desirability function in analytical methods development, Talanta 24 (2014) 123–138.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-892fd493-4d0a-4aaa-8fd5-cf58c2e8ffc2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.