Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this study was to analyze the dust load in St. Petersburg based on the measurements of dust levels in different areas of the city using a CEM DT-9880 portable dust particle counter. A uniform one-character bottom up zoning was performed to determine the parameters, and the dependencies of dust distribution on various factors were identified using the “Ecolog” software package. The zoning was based on more than 2.5 thousand measurements of dust levels. An effective and rational solution to the problem of increased aerotechnogenic load in different areas of the city through the use of modern technologies of hydro-dedusting of city roads with a dust-binding solution based on surfactants was proposed for increasing the adhesion ability of the solution to the standard roadbed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
150--156
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Department of Industrial Safety, Saint Petersburg Mining University Saint Petersburg, Russia
autor
- Department of Industrial Safety, Saint Petersburg Mining University Saint Petersburg, Russia
autor
- Department of Industrial Safety, Saint Petersburg Mining University Saint Petersburg, Russia
Bibliografia
- 1. Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., ... & Querol, X. 2011. Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment, 45(37), 6777–6787.
- 2. Azarov, V., Barikaeva, N., & Solovyeva, T. 2016. Monitoring of Fine Particulate Air Pollution as a Factor in Urban Planning Decisions. Procedia Engineering, 150, 2001–2007.
- 3. Baltrėnaitė, E., Lietuvninkas, A., & Baltrėnas, P. 2018. Biogeochemical and engineered barriers for preventing spread of contaminants. Environmental Science and Pollution Research, 25(6), 5254–5268.
- 4. Barkan, M., Kovshov, S., & Orlov, F. 2015. On the problem of spraying water and dust suppression solutions. Problem of modern science and education, 11 (41), 100–103.
- 5. Chan, C.K., & Yao, X. 2008. Air pollution in mega cities in China. Atmospheric Environment, 42(1), 1–42.
- 6. Davydova, N. D., & Znamenskaya, T. I. 2016. The geological problems of Siberia associated with the development of nonferrous metallurgy. Geography and Natural Resources, 37(4), 313–318.
- 7. Dubey, B., Pal, A.K., & Singh, G. 2018. Airborne particulate matter: source scenario and their impact on human health and environment. In: Climate Change and Environmental Concerns: Breakthroughs in Research and Practice, IGI Global, 447–468.
- 8. Gorshkov, E., & Nasimi, M. 2016. Investigation of urban air pollution with fine dust of natural origin. Engineering Journal of Don, No. 4.
- 9. Gupta, P., Christopher, S.A., Wang, J., Gehrig, R., Lee, Y.C., & Kumar, N. 2006. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmospheric Environment, 40(30), 5880–5892.
- 10. Heitbrink, W.A., Todd, W.F., Cooper, T.C., & O’Brien, D.M. 1990. The Application of Dustiness Tests to the Prediction of Worker Dust Exposure. American Industrial Hygiene Association Journal, 51, 217–223.
- 11. Kim, K.H., Kabir, E., & Jahan, S. A. 2018. Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences, 67, 23–35.
- 12. Kim, K.H., Kabir, E., & Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.
- 13. Korshunov, G., & Romanchenko, S. 2016. Development of innovative technologies of dust removal in treatment and tunneling faces. Journal of Mining Institute, 218, 339–344.
- 14. Kovshov, S. 2013. Biological ground recultivation and increase of soil fertility. Int. J. of Ecology and Development, 25(2), 105–113.
- 15. Kovshov, S., Erzin, A., & Kovshov, V. 2015. Bonding dust with environmentally safe compositions on open dust-forming surfaces in coal producing enterprises. Int. J. of Ecology and Development, 30(1), 11–23.
- 16. Kovshov, S., & Kovshov, V. 2015. Chemical technology of dust suppression on open-pit mines. Int. J. of Ecology and Development, 30(3), 55–67.
- 17. Manoli, E., Voutsa, D., & Samara, C. 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment, 36(6), 949–961.
- 18. O’Shaughnessy, P.T., Kang, M., & Ellickson, D. 2012. A Novel Device for Measuring Respirable Dustiness Using Low Mass Powder Samples. J. Occup. Environ. Hyg., 9(3), 129–139.
- 19. Pashkevich, M., & Petrova, T. 2017. Assessment of area air pollution in the metropolis using geographic information systems. Journal of Mining Institute, 228, 738–742.
- 20. Patra, A.K., Gautam, S., & Kumar, P. 2016. Emissions and human health impact of particulate matter from surface mining operation–A review. Environmental Technology & Innovation, 5, 233–249.
- 21. Shevchenko, V.P. et al. 2018. Dispersed Sedimentary Matter of the Atmosphere. In: The Handbook of Environmental Chemistry. Springer, Berlin, Heidelberg, pp. 38.
- 22. Shi, Z., Shao, L., Jones, T.P., Whittaker, A.G., Lu, S., Berube, K.A., ... & Richards, R.J. 2003. Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmospheric environment, 37(29), 4097–4108.
- 23. Volkodaeva, M., & Kiselev, A. 2017. About development of system of environmental monitoring of atmospheric air quality. Journal of Mining Institute, 227, 589–596.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-892a4015-9991-4bc0-bb48-6d8f6ab2c988