PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mobile driver assistance system based on data from the diagnostic port of vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents one application from the ADAS (Advanced Driver Assistance Systems) group of systems, which enables the reading of parameters from the module connected to the diagnostic port in the vehicle. The developed application enables better control of engine operation and supports the driver in the field of, among others indication of currently running gear and suggestion of switching on the higher or lower gear depending on the engine parameters read. The suggestion of changing gears is shown graphically and sonically. The application is designed for mobile devices working under the control of Android operating system.
Słowa kluczowe
Rocznik
Strony
13--19
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • MARITIME UNIVERSITY OF SZCZECIN, Faculty of Economics and Engineering of Transport, Poboznego 11, 70-515 Szczecin, Poland
autor
  • WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, Faculty of Computer Science, Piastów 17, 70-310 Szczecin, Poland
  • WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, Faculty of Computer Science, Piastów 17, 70-310 Szczecin, Poland
autor
  • MARITIME UNIVERSITY OF SZCZECIN, Faculty of Economics and Engineering of Transport, Poboznego 11, 70-515 Szczecin, Poland
Bibliografia
  • [1] Car park in Poland based on the Central Statistical Office http://www.samar.pl/__/1001/1001.rep/26/.html?locale=pl_PL [in Polish], [date of ccess: 12.10.2017]
  • [2] Average Vehicle Age http://www.acea.be/statistics/article/average-vehicle-age [date of ccess: 12.10.2017]
  • [3] GERONIMO D., LOPEZ A.M., SAPPA A.D., GRAF T.: Survey of Pedestrian Detection for Advanced Driver Assistance Systems, IEEE Trans. on Pattern Analysis and Machine Intell, vol. 32, 2010, pp. 1239-1258
  • [4] LOY G., BARNES N.: Fast shape-based road sign detection for a driver assistance system, Proc. Intelligent Robots and Systems (IROS 2004), vol. 1, 2004, pp. 70-75
  • [5] MALDONADO-BASCON S., et al.: Road-sign detection and recognition based on support vector machines, IEEE Trans. on Intell. Transp. Syst., vol. 8, 2007, pp. 264-278
  • [6] LOPEZ L.D., FUENTES O.: Color-based road sign detection and tracking, Proc. Image Analysis and Recognition, Proceedings, vol. 4633, Springer-Verlag Berlin, 2007, pp. 1138-1147
  • [7] MOGELMOSE A., TRIVEDI M.M., MOESLUND T.B.: Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey, IEEE Trans. on Intell. Transp. Syst., vol. 13, pp. 1484-1497, 2012
  • [8] FORCZMAŃSKI P., MAŁECKI K.: Selected Aspects of Traffic Signs Recognition: Visual versus RFID Approach, in Mikulski J. (ed) Activities of Transport Telematics, Springer Verlag, Berlin Heidelberg, CCIS 395 (2013), pp. 268-274
  • [9] FREJLICHOWSKI D., et al.: Application of Cascades of Classifiers in the Vehicle Detection Scenario for the ‘SM4Public’ System. Proc. 16th Int. Conf. on Intelligent Data Engineering and Automated Learning (IDEAL 2015), LNCS vol. 9375, 2015, pp. 207-215
  • [10] FREJLICHOWSKI D., et al.: Applying Image Features and AdaBoost Classification for Vehicle Detection in the ‘SM4Public’ System. Proc. Int. Conf. Image Processing and Communications (IP&C 2015), Image Processing and Communications Challenges 7, AISC, vol. 389, 2016, pp. 81-88
  • [11] FORCZMANSKI P., NOWOSIELSKI A.: Deep Learning Approach to Detection of Preceding Vehicle in Advanced Driver Assistance, in Mikulski J. (ed) Challenge of Transport Telematics, Springer Verlag, Berlin Heidelberg, CCIS 640 (2016), pp. 293-304
  • [12] SU J., et al.: Design and research on condition monitoring system of brake light of cars, IEEE World Automation Congress, 2012
  • [13] ALPAR O.: Corona segmentation for nighttime brake light detection, IET Intelligent Transport Systems, vol.10(2), 2016, pp. 97-105
  • [14] WANG J.G., et al.: Appearance-based Brake-Lights recognition using deep learning and vehicle detection, IEEE Intelligent Vehicles Symp, 2016, pp. 815-820
  • [15] MAŁECKI K., WĄTRÓBSKI J.: Mobile System of Decision-Making on Road Threats, Procedia Computer Science, vol. 112 2017, pp. 1737-1746
  • [16] STANIEK M.: Stereo vision method application to road inspection, Baltic J. of Road and Bridge Eng., vol 12(1), 2017, pp. 38–47. doi:10.3846/bjrbe.2017.05
  • [17] STANIEK M.: Road Pavement Condition as a Determinant of Travelling Comfort, in: G. Sierpiński (Ed.), Intell. Transp. Syst. and Travel Behav., AISC, 2017, pp. 99–107. doi:10.1007/978-3-319-43991-4_9
  • [18] IWAN S., MAŁECKI K., STALMACH D.: Utilization of Mobile Applications for the Improvement of Traffic Management Systems, in Mikulski J. (ed) Telematics - Support for Transport, Springer Verlag, Berlin Heidelberg, CCIS 471, (2014), pp. 48-58
  • [19] OSKARBSKI J., ZAWISZA M., ŻARSKI K.: Automatic Incident Detection at Intersections with Use of Telematics, Transportation Research Procedia, vol. 14, 2016, pp. 3466-3475
  • [20] OSKARBSKI J., BIRR K., MISZEWSKI M., ŻARSKI K.: Estimating the average speed of public transport vehicles based on traffic control system data, In: Int. Conf. Models and Techn. for Intell. Transp. Syst. (MT-ITS 2015), 2015, pp. 287-293
  • [21] MAŁECKI K., PIETRUSZKA P.: Comparative Analysis of Chosen Adaptive Traffic Control Algorithms, In: Macioszek E., Sierpiński G. (eds) Recent Advances in Traffic Engineering for Transport Networks and Systems (TSTP 2017). Springer, Cham, LNNS, vol 21, 2018
  • [22] MAŁECKI K., PIETRUSZKA P., IWAN S.: Comparative Analysis of Selected Algorithms in the Process of Optimization of Traffic Lights, In: Nguyen N., Tojo S., Nguyen L., Trawiński B. (eds) Intelligent Information and Database Systems. ACIIDS 2017. LNCS, vol. 10192. Springer, Cham, 2017
  • [23] MAŁECKI K.: The Importance of Automatic Traffic Lights time Algorithms to Reduce the Negative Impact of Transport on the Urban Environment, Transportation Research Procedia, vol. 16, 2016, pp. 329-342
  • [24] CELIŃSKI I., SIERPIŃSKI G.: Traffic Signal Control System with Extended Logic in the Context of the Modal Split, IERI Procedia, Elsevier, vol. 4, 2013, pp. 148 – 154. http://dx.doi. org/10.1016/j.ieri.2013.11.022
  • [25] SIERPIŃSKI G., CELIŃSKI I., STANIEK M.: The Model of Modal Split Organisation in Wide Urban Areas using Contemporary Telematic Systems, Proc. of The 3rd Int. Conf. on Transp. Inf. and Safety, 2015, pp. 277-283. doi 10.1109/ICTIS.2015.7232125
  • [26] MYSZKOWSKI S.: Diagnostyka pokładowa standard OBD II/EOBD. Poradnik serwisowy, vol. 5, 2003 [in Polish]
  • [27] On-Board Diagnostic II (OBD II) Systems - Fact Sheet /FAQs https://www. arb.ca.gov/msprog/obdprog/obdfaq.htm. [date of access: 17.02.2017]
  • [28] ELCOCK A., KISTER T.: U.S. Patent Application No. 11/321,562, 2005
  • [29] Ports in OBD II http://www.samochodowka.koszalin.pl/warsztaty/dzialy/bielicki/ obd/systemobd2-eobd.htm. [date of access: 17.07.2017]
  • [30] DUAN J., XIAO J., ZHANG M.: Framework of CANopen protocol for a hybrid electric vehicle, In Intelligent Vehicles Symposium, IEEE, 2007, pp. 906-911
  • [31] ELM327, O. B. D. to RS232 Interpreter. ELM Electronics, 2012
  • [32] COLLINS C., GALPIN M.D., KÄPPLER M.: Android w praktyce: najlepsze techniki programowania na Androida w zasięgu ręki, Helion [in Polish]
  • [33] OBD-II Java API https://github.com/pires/obd-java-api. [date of access: 17.01.2017]
  • [34] AVR-Based Fuel Consumption Gauge, Deriving Miles per Gallon http://www.lightner.net/lightner/bruce/Lightner-183. pdf. [date of access: 25.03.2017].
  • [35] Saving Data in SQL Databases https://developer.android. com/training/ basics/data-storage/databases.html. [date of access: 25.07.2017].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-891ec889-f659-4e69-a511-596d01b12b8c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.