
S. IWAN, K. MAŁECKI, Ł. ZABOROWSKI, M. NÜRNBERG

13Volume 11 • Issue 1 • February 2018

TelematicsTelematics
Transport SystemTransport System

Archives of Volume 11

Issue 1

February 2018

Mobile Driver Assistance System
Based on Data from the Diagnostic

Port of Vehicle

S. IWANa, K. MAŁECKIb, Ł. ZABOROWSKIb, M. NÜRNBERGa

a MARITIME UNIVERSITY OF SZCZECIN, Faculty of Economics and Engineering of Transport, Poboznego 11,
70-515 Szczecin, Poland

b WEST POMERANIAN UNIVERSITY OF TECHNOLOGY, Faculty of Computer Science, Piastów 17, 70-310
Szczecin, Poland

EMAIL: s.iwan@am.szczecin.pl

ABSTRACT
The article presents one application from the ADAS (Advanced Driver Assistance Systems) group of systems,
which enables the reading of parameters from the module connected to the diagnostic port in the vehicle. The
developed application enables better control of engine operation and supports the driver in the field of, among
others indication of currently running gear and suggestion of switching on the higher or lower gear depending on
the engine parameters read. The suggestion of changing gears is shown graphically and sonically. The application is
designed for mobile devices working under the control of Android operating system.

KEYWORDS: Advanced Driver Assistance Systems (ADAS), diagnostic port, mobile application

1. Introduction

Every year, more and more vehicles are equipped with driver
support systems based on numerous sensors, control modules and
cameras. In a modern vehicle the driver is supported by various
information about the driving style, recognized traffic signs and
vehicle data. Many models also offer support in closing the door,
opening and closing the tailgate, parking and many other activities,
while increasing the safety of driving.

However, according to Samar [1], the average age of passenger
cars traveling on Polish roads is around 13 years. The average age
for cars in Europe is according to ACEA [2] about 10 years. Many of
these vehicles are not equipped with on-board computers at all, and
if they already have them, the information displayed is very limited.
The reason is certainly that the number of sensors and modules
installed in is much smaller than in modern cars. However, the vast
majority of these vehicles have a diagnostic connector allowing to
read parameters from the engine management module.

Considering the increasing popularity and functionality of
smartphones that accompany us every day, the aim of this work is to
develop a mobile application analyzing vehicle parameters based on
data from a module connected to the diagnostic port which is located
in the vehicle. The parameters available from the engine module, so
far invisible to the driver, will be analyzed. The application will present
data in a way that is understandable for the vehicle user in accordance
with the selected driving mode. In addition, the application will
visually and audibly signal to the driver the need to change gear to
a higher or lower depending on the registered parameters. It will
also enable the measurement of acceleration time to set speeds and
current and average fuel consumption.

2. Related work

Advanced driver assistance systems (ADAS) help drivers react
to a situation on the road or in a vehicle and thus improve driving
safety [3].

MOBILE DRIVER ASSISTANCE SYSTEM BASED ON DATA FROM THE DIAGNOSTIC PORT OF VEHICLE

© Copyright by PSTT , All rights reserved. 201814

Th e most popular systems of this type are road sign recognition
systems [4-8], commonly implemented in modern vehicles. Th ere
are also known systems and methods of vehicle recognition [9-11],
detection of brake lights [12-15], systems of surface condition
control [16, 17], applications downloading and processing data
from ITS systems [18-20] and communication systems between
vehicle and road infrastructure that allow for optimal switching of
traffi c lights [21-25].

3. Communication with the
vehicle

Th e appearance of the fi rst on-board diagnostic (OBD) systems
[26] was closely related to the continuous monitoring of vehicle
failure and exhaust emissions. Since the introduction of the solution,
the information available has been very diverse and limited in scope.
At the end of the 1980s, in the United States, thanks to the California
Air Resources Board (CARB) [27], it was decided that all vehicles
must be equipped with basic OBD capabilities. Th ese decisions and
an attempt to continuously reduce and control the exhaust emissions
caused that in 1994 the OBD-II specifi cation was issued.

Th is standard has become so popular that over time it also
appeared in Europe. Th e existing European equivalent is denoted
by the abbreviation EOBD (European On Board Diagnostic) [26]
and it has the same technical specifi cation as OBD-II. Since 2000,
it has been mandatory to install it in vehicles with a gasoline
engine and since 2003 in vehicles with a diesel engine.

3.1. The OBD-II system

OBD-II system appearing on the market signifi cantly increased the
ability of vehicles to self-diagnosis and facilitated a communication with
the vehicle using external devices. Th e most important assumptions
of the system are: control of all devices aff ecting the fi nal emission of
the vehicle, protection of the exhaust gas catalytic converter against
damage, optical warning indications when the devices aff ecting the fi nal
emission from the vehicle exhibit functional faults and error memory.

Th e introduction of the system has brought new standards,
which defi ne, among others, the format of sent messages and
available data transmission protocols used in the standardized Data
Link Connector (DLC). Additionally, the related standards provide
the On-board Diagnostics Parameter IDs (OBD-II PIDs) with
possible monitoring parameters along with their detailed description.
However, it is not an obligation for producers to implement all of
them. Th ey can add their own proprietary parameter identifi cation
numbers (PIDs) to standard items.

Th e specifi cation of the diagnostic interface is specifi ed in detail
in SAE J1962 standard [28]. It contains information about the
location in the cockpit and an exact construction indicating a 16-
pin standard female socket with specifi cally spaced communication
protocols lines (Fig. 1).

Vehicle manufacturers have several communication ports at
their disposal, but in most cases only one is used. Each of them has a
position defi ned in the norm, which means that some of the 16 pins
are reserved. Th e remaining pins, not specifi ed in the aforementioned
standard, allow for authorized use by producers [29].

Fig. 1. Diagram of the diagnostic connector in the vehicle [28]

Th e on-board diagnostic system aft er making the connection
provides 9 operating modes defi ned in the SAE J1979 standard [30].
Each of the possible modes is responsible for providing a diff erent
type of data (Table 1).

Table 1. Working modes of OBD-II [30] [own study]

Mode Description

01 Current drive diagnostic data and system information

02 Frozen frame information (saved information
at the time of failure)

03 Error codes

04 Erase diagnostic information

05 Request for oxygen sensor monitor test results

06 The results of discontinuous monitors tests

07 The results of continuous monitors tests

08 The control over the diagnostic system

09 Read information about the vehicle

Considering the scope and objectives of the article, the most
important one to be discussed is the fi rst mode, because it allows
access to the data of the propulsion system in real time.

Th e defi ned list of identifi cation numbers used for data exchange
provides soft ware developers with some important information
that allows them to interpret the received values appropriately.
Th e fi rst of the available identifi cation numbers specifi ed by the
“00” code allows obtaining information on the numbers that can
be used. Th e answer returned by the OBD-II system does not have
a defi ned formula for decoding the result, because it requires a
different interpretation of the value obtained. The number of
bytes returned by the system in the case of such a query is always
4. By decoding the received bytes to the hexadecimal form, we
get a string that once again should be decoded. Each subsequent
character of the hexadecimal value stored in binary form allows to
determine whether the given identifi cation number, starting from
the fi rst, is available for reading.

It is good practice to start diagnostics from checking the
availability of identification numbers. This allows determining
whether the app is correctly connected to the vehicle and do not
send unnecessary commands to the system, thus increasing the
expectations of others. For most of the other parameters included
in the list, short formulas are defi ned that do not require such
in-depth decoding. Th e exact number of returned bytes only
makes it easier to properly decode values and substitute them for
the formula. Clearly defi ned descriptions and values allow users
to create their own prototype libraries to communicate with the
system.

S. IWAN, K. MAŁECKI, Ł. ZABOROWSKI, M. NÜRNBERG

15Volume 11 • Issue 1 • February 2018

3.2. The ELM327 interface

There are several types of interfaces available to connect with
the vehicle. However, the most popular is the specified ELM327
interface created by ELM Electronics [31]. It gained its popularity
thanks to the ability to communicate with all protocols defined for
the OBD-II system. The first available interfaces communicated
with the software via the RS232 port, which was located on older
computers. However, the constantly evolving technology and high
demand led to the creation of three more versions: via USB port,
Bluetooth module and WiFi. The number and type of possible
configuration types allow for data exchange with virtually any
device available on the market.

The big advantage of the ELM327 interface is the fact that in
the absence of any interaction it can go into a low-power sleep
mode. In addition, communication interfaces connected to the port
and using the Bluetooth and WiFi module due to their ergonomic
design do not disturb the driver in driving a car.

4. Driver support application

This application is designed for mobile devices working under
the control of the Android operating system [32]. First time, this
system was presented in October 2008. Thanks to the Google
Inc. Android has become, over time, the most popular operating
system for mobile devices, with a market share of 82%. The last
release of Android is version 7 called Nougat, and Marshmallow
and Lollipop are the most popular so far.

4.1. The project assumptions

To correctly design the application, functional requirements
(Table 2) and non-functional requirements (Table 3) were initially
defined.

Table 2. Functional requirements [own study]

No. Description

FR1 Data exchange between vehicle and smartphone

FR2 Establishing a connection with the vehicle

FR3 Analysis of selected parameters

FR4 Display of parsed and received parameters on a user
friendly interface, with the possibility of change

FR5 A possibility of turning off audible notifications for
gearshifting

FR6 Saving vehicle profile to database

FR7 Establishing a re-connection at unexpected disconnection
of devices

Table 3. Non-functional requirements [own study]

No. Description

NFR1 Device running Android 4.2 or later

NFR2 Device equipped with Bluetooth module

NFR3 ELM327 interface connected to diagnostic port on the
vehicle

For proper data exchange between the vehicle and the mobile

establishment of appropriate forms of messages transferred from
the interface to the application.

Unfortunately, some data downloaded from the diagnostic port
are not legible for the user of the vehicle. An example of it is the
parameter returning the value of the air mass flow sensor. However,
this value together with other available values allow to obtain
knowledge about the current fuel consumption in the vehicle and
allow to calculate the average combustion [34]:

 (1)

where: VSS - the current vehicle speed obtained from the
diagnostic port, MAF - the value of the air mass flow sensor from
the diagnostic port. The calculated MPG value shows the amount
of fuel burned in gallons per mile. In order to adjust the format
to European requirements, the value of 235.21 is divided by the
MPG, thanks to which we get a result in liters per 100 km.

The application also allows indicating the current gear while
the vehicle is moving. The application uses two parameters for
this: vehicle speed and engine speed. Then, in the process of
calibration the application, a constant value for each gear is calculated
independently. The ability of the gears’ calibration allows using
the application in many vehicles. This functionality also allows
monitoring the time of moving in a given gear, as well as suggesting
a change of gear to a higher or lower, at a specific engine speed. In
the application, it was assumed to suggest a lower gear if the engine
speed for a given gear drops below 1,400 rpm or 1,200 rpm for
second gear. The suggestion of switching on the higher gear always
takes place at the same level, 2,500 rpm. All parameters provided
by the application are arranged on several screens, thus ensuring
readability and the ability to change the interface depending on the
driving mode.

Each suggestion of changing the gear beyond a graphic notification
carries with it a sound signal, made using the ToneGenerator class
included in Android [32]. This functionality has been implemented
so that the driver does not have to pay much attention to the device
while driving, but still responds appropriately to the delivered
messages. However, it is possible to disable this notification in case it
becomes too persistent for the user.

The application allows saving the profile of a given vehicle to
the local database [35] in the phone’s memory. A database contains
one table that stores data of the VIN number of the vehicle, type of
fuel, number of gears and calibration of individual gears. The main
key of the table is the column containing the name of the vehicle
profile entered by the user.

The last of the defined functional requirements is the possibility
of automatic connection with the module plugged into the diagnostic
port, in case the connection was interrupted without user
intervention.

MOBILE DRIVER ASSISTANCE SYSTEM BASED ON DATA FROM THE DIAGNOSTIC PORT OF VEHICLE

© Copyright by PSTT , All rights reserved. 201816

4.2. The application structure

Th e application structure is based on eight packages with 21
classes:

• Activity – contains one class, the main activity of the whole
application,

• Database – there is a class responsible for exchanging data
with the database,

• Fragments – a package containing all classes that provide
particular views in the application,

• Interfaces – a package containing interfaces that ensure
communication between fragments and the main Activity class,

• Model – here is a class containing the object of vehicle,
• OBD2 – the package responsible for establishing a connection

and exchanging data with the vehicle,
• Services – there is a class responsible for the Bluetooth

module,
• Utils – package of classes’ auxiliary in the application

operation.
Th e only class included in the Activity package is MainActivity.

Th is class has an implemented SectionsPagerAdapter inheriting from
FragmentPageAdapter responsible for loading individual fragments
into subsequent application screens. In addition, the main task of the
MainActivity class is to provide fragments, through the implemented
BroadcastReceiver, with information received from the service class
and processing diagnostic data.

Th e next package is Database. Th e DatabaseAdapter class is
included in it and it is responsible for creating a database in case it
does not exist and for opening or closing a connection to a database.
Th is class also provides methods used to remove or add new vehicle
profi les.

Th e next package is the largest one. Fragments included in it
defi ne each of the available screens in the application. Th ere are 10
classes that describe the views in the application.

Th e project also includes Interfaces and Model packages.
Th e fi rst one contains the ComunicateFragment interface used
to communicate between the Fragments extending it and the
MainActivity class. Th e Model package includes the Vehicle class,
in which, at the moment of establishing the connection, data on
available identifi cation numbers from the diagnostic port, type of
fuel, constants calculated for each gear, as well as distance traveled
and average fuel consumption are stored.

A few of the most important classes are in the OBD2 package. Th e
package contains 4 classes: two of them (CustomCommandOBD
and PidOBD) are not currently used, but they were created for
further development of the project. Th e most important classes are
TransferConfi gOBD and TransferDataOBD. Both of them act on a
separate thread at the time of the operation, thus causes that the
thread of the main application is not overloaded. Th ey are started
from the level of the BluetoothService service class. Th e fi rst one
is responsible for correctly confi guring the diagnostic interface
connected to the vehicle and establishing a connection with it, while
the second one is activated when the fi rst connection is successful.
TransferDataOBD is a class that is responsible for sending, receiving
and analyzing received data.

Another of the most important elements is the Services package
which contains the BluetoothService class. Th is class is responsible
for initiating and supervising the connection to the diagnostic
device. Th is class allows the application to react properly when it
is minimized. Th e service class informs the application when the
status of the Bluetooth module changes.

Utils is the last package. Th e MessageUtil and StaticValues
classes included in it support the operation of the application. Th e
fi rst of these classes allows sending messages to the service class
from anywhere in the application code. Th e second one defi nes
constant values used during application operation.

4.3. The application’s interface

Th e main screen of the developed application is shown in Fig. 2.
Th e icons on the right side of the screen are the buttons corresponding
to the following functions: profi le editing, availability of Bluetooth
module and connection with the module. Th e next program options
(shown at the top of the main screen) are available on the next screens,
visible by moving the current screen to the left (it is mobile application,
so user can operate it using screen of device).

Editing the vehicle profi le (Fig. 3) allows inserting or changing
such data as: the fuel type of our vehicle, the number of available
gears and the revolutions thresholds for each gear. In the right part
of the screen there is a list of gears marked in green when the gear
is set up and in red when the gear is not defi ned yet. From this
screen user can also move to the vehicle’s profi le screen (Fig. 4) by
clicking the button in the upper right corner which is managed by
the SaveVehicleProfi leFragment class.

Fig. 2. The main window of developed application [own study]

Another option available on the main screen of the application
is a possibility of informing the user about the status of the
Bluetooth module together with the possibility of searching and
establishing a connection with a new device. Th e screen that
appears for this purpose contains a list of devices already paired
and currently searched. Th e DeviceListFragment dialog deals with
the management of available devices as well as the search. When
the user selects the device, the dialog notifi es the service class that
automatically establishes the connection. Th is button has also an
informative role. Th rough possible visible states it indicates the
connection status - when it is not connected to the vehicle (yellow),
establishes a connection (circular ProgressBar), and green when the
connection has been established.

S. IWAN, K. MAŁECKI, Ł. ZABOROWSKI, M. NÜRNBERG

17Volume 11 • Issue 1 • February 2018

Fig. 3. The profi le editing [own study]

Th e second available screen (by moving the screens to the left)
is the view defi ned by the EcoLiveFragment class, which presents
information about the current vehicle speed, the number of engine
revolutions and the current gear and indications regarding its change
(Fig. 5). At the bottom of the screen there is a green button for
displaying the graphs of the percentage of gears used during the trip
and the number of indications for the suggested gear (Fig. 6).

Fig. 4. Saving the profi le [own study]

Fig. 5. The second screen of the application [own study]

Fig. 6. The screen with graphs of gears used during the trip [own study]

Th e third screen of the application (Fig. 7) is implemented
by the GraphLiveFragment class and enables the display of a line
graph containing actual data on current, instantaneous combustion,
average combustion and engine speed.

Fig. 7. The third screen of the application [own study]

Another available screen there is a view representing the
SportLiveFragment class, displaying information about the current
throttle position and engine load. At this point, the possibility of
measuring the acceleration time on 3 sections of the road appears
(Fig. 8).

Fig. 8. The screen with engine data [own study]

Numerical monitoring of the connection time, distance traveled,
fuel consumption and average and instantaneous combustion of the
vehicle is presented on the fi ft h screen of the application (Fig. 9).

Fig. 9. Trip data [own study]

All activities related to the operation of the application are
recorded in the application and they are presented on the next
screen (Fig. 10).

MOBILE DRIVER ASSISTANCE SYSTEM BASED ON DATA FROM THE DIAGNOSTIC PORT OF VEHICLE

© Copyright by PSTT , All rights reserved. 201818

Fig. 10. The activity of the application [own study]

4.4. Testing of the application

Th ree stages of testing the developed application were performed:
checking the correctness of the operation of defi ned functional
requirements, checking the demand for system resources and
verifi cation of the application’s usefulness.

Th e fi rst stage of testing was based on the developed test scenarios:
• Scenario 1 – checking the correctness of establishing a connection

with the ELM327 interface and the diagnostic port,
• Scenario 2 – checking the gear shift signaling,
• Scenario 3 – saving the vehicle profi le to the database.

Th e application has been tested on three mobile devices:
Huawei P9Lite with Android version 6.0, Samsung Galaxy J5 with
version 6.0.1 and HTC One S with Android 4.2.

Th e fi rst test scenario was carried out twice on each of the above
mentioned devices. Of the six attempts to establish a connection,
fi ve went well and achieved the intended result in the scenario. One
of the trials for the Huawei P9Lite was unsuccessful. Th e error did
not result from the way the application or smartphone works. Th e
only diagnostic problem was the diagnostic interface returning the
wrong value for the query received. Another attempt was successful.

Th e second test scenario was successful on each of the tested
mobile devices. Th e application running on various hardware
confi gurations and system versions behaved correctly, respectively
signaling graphically and audibly suggested gears.

Th e last test was also successful. Th e application correctly created
a database and saved the vehicle profi le for each tested smartphone.

Th e second stage of testing was to check the system’s demand for
system resources. Four properties were analyzed: RAM usage, CPU
usage, network connection usage, and GPU utilization. At the time
of data exchange, the application used the processor of the device
within 5%, which is a low value, not slowing down the device. Th e
use of RAM during application operation was within 31-33 MB.
Th ese values mean that the developed soft ware can work in the
background, without interfering with other enabled applications.

Th e last stage of testing was making the application available
to a group of 15 users who determined the usability and quality of
the application. Each participant of the study had the opportunity
to use the application throughout the day, aft er which he answered
the questionnaire with a few questions with a scale from 1 (very
bad) to 5 (very good). Among the surveyed users were people with
long-term driving experience and those who have recently obtained
a driving license. Th ere were women and men in the group. Th e
results, being the average of all ratings, are shown in Table 4.

Table 4. Evaluation of the usability of the application by users [own

study]

Question Rating

How do you rate the refresh rate of data? (Speed response
to change in driving value)

4.3

How do you rate the performance of the application while
recording and analyzing data?

4.7

How do you rate ease of use in the app? 4.9

How do you rate the readability of information? 4.8

How do you assess the implemented display functionality
and suggestion of gearshift?

4.6

How do you assess the implemented functionality of
current and medium fuel combustion?

4.0

Overall app rating 4.5

5. Conclusion

A mobile application to support the driver of the vehicle, in
which there is no on-board computer installed was developed. Th e
application analyzes vehicle parameters based on data from the
module connected to the diagnostic port. Th e “AutoComp” mobile
application is designed for devices with Android system. It is
characterized by a large simplicity of interface, intuitive operation
and functionality supporting the driver.

Th e application correctly informs the user about currently
running gear and suggests the driver change to a higher or lower
one, depending on the engine parameters read. Th e application
correctly calculates current and average fuel consumption in the
vehicle, thus allowing greater control of driving economy.

Th e developed application is characterized by a modular
structure, which allows for further development. It is possible, for
example, to implement the functionality regarding the deletion of
diagnostic errors.

Bibliography

[1] Car park in Poland based on the Central Statistical Offi ce
http://www.samar.pl/__/1001/1001.rep/26/.html?locale=pl_
PL [in Polish], [date of ccess: 12.10.2017]

[2] Average Vehicle Age http://www.acea.be/statistics/article/
average-vehicle-age [date of ccess: 12.10.2017]

[3] GERONIMO D., LOPEZ A.M., SAPPA A.D., GRAF
T.: Survey of Pedestrian Detection for Advanced Driver
Assistance Systems, IEEE Trans. on Pattern Analysis and
Machine Intell, vol. 32, 2010, pp. 1239-1258

[4] LOY G., BARNES N.: Fast shape-based road sign detection
for a driver assistance system, Proc. Intelligent Robots and
Systems (IROS 2004), vol. 1, 2004, pp. 70-75

[5] MALDONADO-BASCON S., et al.: Road-sign detection and
recognition based on support vector machines, IEEE Trans.
on Intell. Transp. Syst., vol. 8, 2007, pp. 264-278

[6] LOPEZ L.D., FUENTES O.: Color-based road sign detection and
tracking, Proc. Image Analysis and Recognition, Proceedings,
vol. 4633, Springer-Verlag Berlin, 2007, pp. 1138-1147

S. IWAN, K. MAŁECKI, Ł. ZABOROWSKI, M. NÜRNBERG

19Volume 11 • Issue 1 • February 2018

[7] MOGELMOSE A., TRIVEDI M.M., MOESLUND T.B.:
Vision-Based Traffic Sign Detection and Analysis for Intelligent
Driver Assistance Systems: Perspectives and Survey, IEEE
Trans. on Intell. Transp. Syst., vol. 13, pp. 1484-1497, 2012

[8] FORCZMAŃSKI P., MAŁECKI K.: Selected Aspects of
Traffic Signs Recognition: Visual versus RFID Approach, in
Mikulski J. (ed) Activities of Transport Telematics, Springer
Verlag, Berlin Heidelberg, CCIS 395 (2013), pp. 268-274

[9] FREJLICHOWSKI D., et al.: Application of Cascades
of Classifiers in the Vehicle Detection Scenario for the
‘SM4Public’ System. Proc. 16th Int. Conf. on Intelligent Data
Engineering and Automated Learning (IDEAL 2015), LNCS
vol. 9375, 2015, pp. 207-215

[10] FREJLICHOWSKI D., et al.: Applying Image Features
and AdaBoost Classification for Vehicle Detection in the
‘SM4Public’ System. Proc. Int. Conf. Image Processing
and Communications (IP&C 2015), Image Processing and
Communications Challenges 7, AISC, vol. 389, 2016, pp. 81-88

[11] FORCZMANSKI P., NOWOSIELSKI A.: Deep Learning
Approach to Detection of Preceding Vehicle in Advanced
Driver Assistance, in Mikulski J. (ed) Challenge of Transport
Telematics, Springer Verlag, Berlin Heidelberg, CCIS 640
(2016), pp. 293-304

[12] SU J., et al.: Design and research on condition monitoring
system of brake light of cars, IEEE World Automation
Congress, 2012

[13] ALPAR O.: Corona segmentation for nighttime brake light
detection, IET Intelligent Transport Systems, vol.10(2), 2016,
pp. 97-105

[14] WANG J.G., et al.: Appearance-based Brake-Lights recognition
using deep learning and vehicle detection, IEEE Intelligent
Vehicles Symp, 2016, pp. 815-820

[15] MAŁECKI K., WĄTRÓBSKI J.: Mobile System of Decision-
Making on Road Threats, Procedia Computer Science, vol.
112 2017, pp. 1737-1746

[16] STANIEK M.: Stereo vision method application to road
inspection, Baltic J. of Road and Bridge Eng., vol 12(1), 2017,
pp. 38–47. doi:10.3846/bjrbe.2017.05

[17] STANIEK M.: Road Pavement Condition as a Determinant of
Travelling Comfort, in: G. Sierpiński (Ed.), Intell. Transp. Syst.
and Travel Behav., AISC, 2017, pp. 99–107. doi:10.1007/978-
3-319-43991-4_9

[18] IWAN S., MAŁECKI K., STALMACH D.: Utilization of Mobile
Applications for the Improvement of Traffic Management
Systems, in Mikulski J. (ed) Telematics - Support for Transport,
Springer Verlag, Berlin Heidelberg, CCIS 471, (2014), pp. 48-58

[19] OSKARBSKI J., ZAWISZA M., ŻARSKI K.: Automatic
Incident Detection at Intersections with Use of Telematics,
Transportation Research Procedia, vol. 14, 2016, pp. 3466-3475

[20] OSKARBSKI J., BIRR K., MISZEWSKI M., ŻARSKI K.:
Estimating the average speed of public transport vehicles based
on traffic control system data, In: Int. Conf. Models and Techn.
for Intell. Transp. Syst. (MT-ITS 2015), 2015, pp. 287-293

[21] MAŁECKI K., PIETRUSZKA P.: Comparative Analysis of
Chosen Adaptive Traffic Control Algorithms, In: Macioszek
E., Sierpiński G. (eds) Recent Advances in Traffic Engineering
for Transport Networks and Systems (TSTP 2017). Springer,
Cham, LNNS, vol 21, 2018

[22] MAŁECKI K., PIETRUSZKA P., IWAN S.: Comparative
Analysis of Selected Algorithms in the Process of Optimization
of Traffic Lights, In: Nguyen N., Tojo S., Nguyen L., Trawiński
B. (eds) Intelligent Information and Database Systems.
ACIIDS 2017. LNCS, vol. 10192. Springer, Cham, 2017

[23] MAŁECKI K.: The Importance of Automatic Traffic Lights
time Algorithms to Reduce the Negative Impact of Transport
on the Urban Environment, Transportation Research
Procedia, vol. 16, 2016, pp. 329-342

[24] CELIŃSKI I., SIERPIŃSKI G.: Traffic Signal Control System
with Extended Logic in the Context of the Modal Split, IERI
Procedia, Elsevier, vol. 4, 2013, pp. 148 – 154. http://dx.doi.
org/10.1016/j.ieri.2013.11.022

[25] SIERPIŃSKI G., CELIŃSKI I., STANIEK M.: The Model
of Modal Split Organisation in Wide Urban Areas using
Contemporary Telematic Systems, Proc. of The 3rd Int. Conf.
on Transp. Inf. and Safety, 2015, pp. 277-283. doi 10.1109/
ICTIS.2015.7232125

[26] MYSZKOWSKI S.: Diagnostyka pokładowa standard OBD
II/EOBD. Poradnik serwisowy, vol. 5, 2003 [in Polish]

[27] On-Board Diagnostic II (OBD II) Systems - Fact Sheet /
FAQs https://www. arb.ca.gov/msprog/obdprog/obdfaq.htm.
[date of access: 17.02.2017]

[28] ELCOCK A., KISTER T.: U.S. Patent Application No. 11/321,
562, 2005

[29] Ports in OBD II http://www.samochodowka.koszalin.pl/
warsztaty/dzialy/bielicki/ obd/systemobd2-eobd.htm. [date
of access: 17.07.2017]

[30] DUAN J., XIAO J., ZHANG M.: Framework of CANopen
protocol for a hybrid electric vehicle, In Intelligent Vehicles
Symposium, IEEE, 2007, pp. 906-911

[31] ELM327, O. B. D. to RS232 Interpreter. ELM Electronics,
2012

[32] COLLINS C., GALPIN M.D., KÄPPLER M.: Android w
praktyce: najlepsze techniki programowania na Androida w
zasięgu ręki, Helion [in Polish]

[33] OBD-II Java API https://github.com/pires/obd-java-api.
[date of access: 17.01.2017]

[34] AVR-Based Fuel Consumption Gauge, Deriving Miles per
Gallon http://www.lightner.net/lightner/bruce/Lightner-183.
pdf. [date of access: 25.03.2017].

[35] Saving Data in SQL Databases https://developer.android.
com/training/ basics/data-storage/databases.html. [date of
access: 25.07.2017].

