PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Biological clock - is the need for a clock a common issue for cells and computers?

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recurrent 24 hours oscillations of biological activities which are generally called circadian rhythms are considered to be a mechanism allowing synchronisation of biological processes. The oscillations are generated by operation of special clock-like intra-cell devices comprising commonly transcription-translation processes as basis of measuring the time. The clock mechanism is controlled by two cooperating working out-of-phase negative feedback loops. Directly the oscillations are driven by steering signals changing the adjustment of feedback loops. They are created de novo in each cycle by complexation of synthesized proteins after their concentration reaches suitably high values. The complexes inhibit the protein synthesis in the own system while inducing it simultaneously in the cooperating one initiating in this way the next oscillation wave. The inhibition of protein synthesis is correlated with the degradation of already synthesizes molecules allowing the return to starting point of oscillation. The alignment of the proper phase of peripheral tissue cells clocks is maintained by the central brain clock – master clock.
Rocznik
Strony
255--265
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Jagiellonian University – Medical College, Chair of Medical Biochemistry, Kraków, Poland
autor
  • Jagiellonian University – Medical College, Chair of Medical Biochemistry, Kraków, Poland
autor
  • Jagiellonian University – Medical College, Department of Bioinformatics and Telemedicine, Kraków, Poland
  • Jagiellonian University – Faculty of Mathematics and Computer Science - Chair of Applied Computer Science, Kraków, Poland
Bibliografia
  • 1. A. Sehgal - Molecular Biology of circadian rhythms. Part I. Willey-Liss 2004.
  • 2. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell – Garland Science 2008.
  • 3. Robles MS, Boyault C, Knutti D, Padmanabhan K, Weitz CJ. Identification of RACK1 and protein kinase Cα as integral components of the mammalian circadian clock. Science 327, 2010, 463-466.
  • 4. van Gelder RN, Herzog ED, Schwartz WJ, Taghert PH. Circadian rhythms: In the loop at last. Science 300, 2003, pp 1534-1535.
  • 5. Darlington TK, Wager-Smith K, Ceriani MF, Staknis D, Gekakis N, Steeves TD, Weitz CJ, Takahashi JS, Kay SA. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280, 1998, 1599-1603.
  • 6. Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science 332, 2011, pp 1436-1439.
  • 7. Brown SA. (2011) A new histone code for clocks? Science 333, 1833-1835.
  • 8. DiTacchio L, Le HD, Vollmers C, Hatori M, Witcher M, Secombe J, Panda S. (2011) Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333, 1881-1884.
  • 9. Bass J, Takahashi JS. Cicadian integration of metabolism and energetics. Science 330, 2010, pp 1349-1354.
  • 10. Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S-N, McKnight SL. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 2003, 379-383.
  • 11. Nusinow DA, Helfer A, Hamilton EE, King JJ, Imaizumi TF, Schultz T, Farré EM, Kay SA. The ELF4-ELF3-LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 2011 398-402.
  • 12. Schibler U. Liver regeneration clocks on. Science 302, 2003, 234-235.
  • 13. Sanchez SE, Petrillo E, Beckwith EJ, Zhang X, Rugnone ML, Hernando CE, Cuevas JC, Herz MAG, Depetris-Chauvin A, Simpson CG, Brown JWS, Cerdán PD, Borevitz JO, Mas P, Ceriani MF, Kornblihtt AR, Yanovsky MJ. A methyl transferase links the circadian clock to the regulation of alternative splicing. Nature 468, 2010, pp 112-116.
  • 14. Lamia KA, Papp SJ, Yu RT, Barish GD, Uhlenhaut H, Jonker JW, Downes M, Evans RM. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 2011, 552-553.
  • 15. Dodd AN, Salathia N, Hall A, Kévei E, Tóth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR. Plant circadian clocks increase photosynthesis, growth, survival and competitive advantage. Science 309, 2005, 630-633.
  • 16. Lincoln GA, Clarke LJ, Hut RA, Hazlerigg DG. Characterizing a mammalian circannual pacemaker. Science 314, 2006, 1941-1944.
  • 17. Sussman MR, Phillips GN Jr. How plants cells go to sleep for a long, long time. Science 326, 2009, 1356-1357.
  • 18. Dausmann KH, Glos J, Heldmaier G. Energetics of tropical hibernation. J. Comp Physiol B. 179, 2009, 345-357.
  • 19. Heldmaier G. Life on low flame in hibernation. Science 331, 2011, 866-867.
  • 20. Johnson CH, Egli M, Stewart PL. Structural insights into a circadian oscillator. Science 322, 2008, 697-701.
  • 21. Vogel G. Telling time without turning on genes. Science 331, 2011, 391.
  • 22. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature 469 2011 498-503.
  • 23. Reppert SM. Cellular and molecular basis of circadian timing in mammals. Semin Perinatol. 24, 2000, 243-246.
  • 24. Reppert SM, Weaver DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 63, 2001, 647-676.
  • 25. Fogle KJ, Parson KG, Dahm NA, Holmes TC. CRYPTOCHROME is a blue-light sensor that regulates neuronal firing rate. Science 331, 2011, 1409-1413.
  • 26. Buhr ED, Yoo S-H, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 2010, 379-385.
  • 27. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288, 2000, 682-685.
  • 28. Sehgal Amita - Molecular Biology of circadian rhythms. Part III. Chapter 6. Willey-Liss 2004.
  • 29. Green CB, Menaker M. Clocks on the brain. Science 301, 2003, 319-320.
  • 30. Stein GS, Pardee AB. Cell cycle and growth control – Biomolecular regulation and cancer. Wiley-Liss 2004.
  • 31. Berg JM, Tymoczko JL, Streyer L. Biochemistry W.H. Freeman and Company New York 2002, p. 402.
  • 32. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell – Garland Science 2008 page 293.
  • 33. Plikus MV, Mayer JA, de la Cruz D, Baker RE, Maini PK, Maxson R, Chuong C-M. Cyclic dermal BMP signaling regulates stem cell activation during hair regeneration. Nature 451, 2008, 340-344.
  • 34. Zielke N, Kim KJ, Tran V, Shibutani ST, Bravo M-J, Nagarajan S, van Straaten M, Woods B, von Dassow G, Rottig C, Lehner CF, Grewal SS, Duronio RJ, Edgar BA. Control of Drosophila endocycles by E2F and CRL4CDT2 Nature 480, 2011 , 123-127
  • 35. Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R. Early gamma oscillations synchronize developing Thalamus and Cortex. Science 334, 2011, 226-229.
  • 36. Moreno-Risueno MA, van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 329, 2010, 1306-1311
  • 37. Traas J, Vernoux T. Oscillating roots. Science 329, 2010 pp 1290-1291
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89197588-188b-4b34-9b4a-1057fce26061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.