Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we present some modification of the Blair and Manne algorithm for finding the center of a tree network in the distributed, self-stabilizing environment. Their algorithm finds n/2 -separator of a tree. Our algorithm finds weighted centroid, which is direct generalization of the former one for tree networks with positive weights on nodes. Time complexity of both algorithms is O(n2), where n is the number of nodes in the network.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
27--37
Opis fizyczny
Bibliogr. 9 poz., rys.
Twórcy
autor
- Institute of Mathematics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
autor
- Institute of Computer Science, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin, Poland
Bibliografia
- [1] Dijkstra E. W., Self-stabilizing in spite of distributed control, Communications of the ACM 17 (1974): 643.
- [2] Schneider M., Self-Stabilization, ACM Computing Surveys 25 (1) (1993).
- [3] Dolev S., Self-stabilization, The MIT Press (2000).
- [4] Harary F., Graph Theory, Addison-Wesley (1972).
- [5] Zelinka B., Medians and peripherians of trees, Archivum Mathematicum 4 (2) (1968): 87.
- [6] Bruell S. C., Ghosh S., Karaata M. H., Pemmaraju S. V., Self-stabilizing algorithms for finding centers and medians of trees, SIAM Journal on Computing 29 (1999): 600.
- [7] Blair J. R. S., Manne F., Efficient self-stabilizing algorithms for tree networks, Proceedings of the 23rd International Conference on Distributed Computing Systems, (ICDCS) Providence, Rhode Island (2003): 20.
- [8] Chepoi V., Fevat T., Godard E., Vaxès Y., A self-stabilizing algorithm for the median problem in partial rectangular grids and their relatives, Algorithmica 62 (2012): 146.
- [9] Bielak H., Panczyk M., A self-stabilizing algorithm for median election in some weighted graphs (in preparation).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-891942db-468b-4c1b-9cd6-afabd930d19b