PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency Analysis of the Generation of Energy in a Biogas CHP System and its Management in a Waste Landfill – Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a waste neutralization facility, the landfill is a kind of bioreactor producing landfill gas or (LFG) - biogas, which should be captured and neutralised for environmental reasons. One of the ways of its utilisation is the combined production of heat and electrical energy in combined heat and power (CHP) cogeneration systems. For that purpose, the assessment of the energy efficiency of a cogeneration unit was undertaken in this work on the basis of the unit performance over the last 5 years. The analysis of the CHP system energy performance demonstrated that the ratios range at the lower limits for units up to 0.5 MW. The lower efficiency of fuel chemical conversion in the CHP plant (0.70) stems from the failure to use the rated thermal and electrical power fully (74.2%), which is caused by the insufficient stream of biogas collected from the landfill (161.46 m3∙h-1). The analysis of the generated energy usage, particularly in terms of heat, has shown a surplus which is not used and therefore is a loss. The proposed solutions in this area should optimize the use of heat generated from the renewable source, i.e. landfill biogas.
Rocznik
Strony
143--156
Opis fizyczny
Bibliogr. 52 poz., rys., tab.
Twórcy
  • Institute of Engineering, State University of Applied Sciences, Nowy Sącz, ul. Zamenhofa 1A, 33-300 Nowy Sącz, Poland
  • Department of Environmental Technologies, Cracow University of Technology, ul. Warszawska 24, 31-155 Cracow, Poland
  • Department of Water and Wastewater Engineering, Silesian University of Technology, ul. Konarskiego 18, 44-100 Gliwice, Poland
  • Faculty Natural Sciences and Health, The John Paul II Catholic University of Lublin, ul. Konstantynów 1H, 20-708 Lublin, Poland
Bibliografia
  • 1. Adamcová D., Vaverková M., Břoušková E. 2016. Emission assessment at the Štěpánovice municipal solid waste landfill focusing on CH4 emissions. Journal of Ecological Engineering, 17(3), 9–17. https://doi.org/10.12911/22998993/63321
  • 2. Amir S., Henning D., Karlsson B.G. 2013. Simulation and introduction of a CHP plant in a Swedish biogas system. Renewable Energy, 49, 242–249. https://doi.org/10.1016/j.renene.2012.01.022.
  • 3. Bocewicz G., Szwarc E., Wikarek J., Nielsen P., Banaszak Z. 2012. A competency-driven staff assignment approach to improving employee scheduling robustness. Eksploatacja i Niezawodnosc-Maintenance and Reliability, 23, 117–131. http://dx.doi.org/10.17531/ein.2021.1.13
  • 4. Buck M., Graf A., Graichen P. 2019. European Energy Transition 2030. The Big Picture. Berlin: Agora Verkehrswende. https://www.stiftung-mercator.de/de/publikationen/european-energy-transition-2030-the-big-picture/, (accessed 21.02.21)
  • 5. Chacartegui G., Carvalho M., Abrahão R., Becerra J. 2015. Analysis of a CHP plant in a municipal solid waste landfill in the South of Spain. Applied Thermal Engineering, 91, 706–717. https://doi.org/10.1016/j.applthermaleng.2015.08.069
  • 6. Ciuła J. 2021. Modeling the migration of anthropogenic pollution from active municipal landfill in groundwaters. Architecture Civil Engineering Environment, 14(2), 81–90. https://doi.org/10.21307/ACEE-2021-017
  • 7. Ciuła J., Gaska K., Generowicz A., Hajduga G. 2018. Energy from Landfill Gas as an Example of Circular Economy. E3S Web of Conferences, 30, 03002. https://doi.org/10.1051/e3sconf/20183003002
  • 8. Ciuła J., Kozik V., Generowicz A., Gaska K., Bak A., Paździor M., Barbusiński K. 2020. Emission and Neutralization of Methane from a Municipal Landfill-Parametric Analysis. Energies, 13, 6254. https://doi.org/10.3390 /en13236254
  • 9. den Boer E., den Boer J., Hakalehto E. 2020. Volatile fatty acids production from separately collected municipal biowaste through mixed cultures fermentation. Journal of Water Process Engineering, 38, 101582. https://doi.org/10.1016/j.jwpe.2020.101582
  • 10. Dregulo A.M., Bobylev N.G. 2021. Integrated Assessment of Groundwater Pollution from the Landfill of Sewage Sludge, 22(1), 68–75. https://doi.org/10.12911/22998993/128872
  • 11. Dużyński A. 2011. A summary of three years’ operation of the biogas cogeneration set at the Warta S.A. waste treatment plant in Czestochowa. BUSES – Technology, Operation, Transport Systems 2, 138–153. https://yadda.icm.edu.pl/baztech/element/bw-meta1.element.baztech-article-BWAW-0016-0016, (accessed 21.01.21), [in Polish]
  • 12. Gaska K., Generowicz A., Lobur M., Jaworski N., Ciuła J., Vovk M. 2019. Advanced algorithmic model for poly-optimization of biomass fuel production from separate combustible fractions of municipal wastes as a progress in improving energy efficiency of waste utilization. E3S Web of Conferences, 122, 01004. https:// doi.org/10.1051/e3sconf/201912201004
  • 13. Gewald D., Siokos K., Karellas S., Spliethoff H. 2012. Waste heat recovery from a landfill gas-fired power plant. Renewable and Sustainable Energy Reviews 16, 1779–1789. https://doi.org/10.1016/j.rser.2012.01.036
  • 14. Gong H., Chen Z., Yu H., Wu W., Wang W., Pang H., Du M.N. 2018. Methane recovery in a combined amine absorption and gas steam boiler as a self-provided system for biogas upgrading. Energy 157, 744–751. https://doi.org/10.1016/j.energy.2018.06.004
  • 15. Gronba-Chyła A.M., Generowicz A., Kramek A. 2021. Using Selected Types of Waste to Produce New Light Ceramic Material. Polish Journal of Environmental Studies, 30(3), 2073–2083. https://doi.org/10.15244/pjoes/126496
  • 16. Gronba-Chyła A.M., Generowicz A. 2020. Municipal waste fraction below 10 mm and possibility of its use in ceramic building materials. Przemysł Chemiczny, 99(9), 1318–1321. https://doi.org/10.15199/62.2020.9.10
  • 17. Jeswani H.K., Smith R.W., Azapagic A. 2013. Energy from waste: carbon footprint of incineration and landfill biogas in the UK. International Journal of Life Cycle Assessment, 18, 218–229.
  • 18. Kampman B., Leguijt C., Scholten T., Tallat-Kelpsaite J., Brückmann R., Maroulis G., Lesschen J.P., Meesters K., Sikirica N., Elbersen B. 2020. Optimal use of biogas from waste streams. An assessment of the potential of biogas from digestion in the EU beyond 2020. European Commission. https://ec.europa.eu/energy/sites/ener/files/documents/ce_delft_3g84_biogas_beyond_2020_final_report.pdf. 2017, (accessed 10.02.21).
  • 19. Keršys A., Kalisinskas D., Pukalskas S., Vilkauskas A., Keršys R., Makaras R. 2013. Investigation of the influence of hydrogen used in internal combustion engines on exhaust emission. Maintenance and Reliability, 15, 384–389.
  • 20. Kornatka M. 2018. Analysis of the exploitation failure rate in Polish MV networks. Maintenance and reliability, 20, 413–419. http://dx.doi.org/10.17531/ein.2018.3.9.
  • 21. Kouvo P. 2016. High Efficiency Landfill Gas Fired Power Plant Process with ORC. Journal of Earth Science and Engineering, 6, 254–263. https://doi.org/10.17265/2159581X/2016.05.003
  • 22. Koval V., Mikhno I., Hajduga G., Gaska K. 2019. Economic efficiency of biogas generation from food product waste. E3S Web of Conferences 100, 00039. https://doi.org/10.1051/3sconf/201910000039
  • 23. Kowalski S. 2016. Application of dimensional analysis in the fretting wear studies. Journal of the Balkan Tribological Association 22, 3076–3088. https://doi. org/10.1177/1350650119875067
  • 24. Kowalski Z., Generowicz A., Makara A., Kulczycka J. 2015. Evaluation of Municipal Waste Landfilling using the Technology Quality Assessment Method. Environment Protection Engineering 41(4),167–179. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-53f8f9b4-4547-408f825f729bdec9b0b8, (accessed 2.10.21)
  • 25. Kowalski S. 2020. Failure analysis of the elements of a forced-in joint operating in rotational bending conditions. Engineering Failure Analysis, 118, 104864. https://doi.org/10.1016/j.engfailanal.2020.104864
  • 26. Kurbatova T., Sidortsovbc R. 2022. Trash to Hryvnias: The economics of electricity generation from landfill gas in Ukraine. International Journal of Sustainable Energy Planning and Management, 33, 53–64. http://doi.org/10.5278/ijsepm.6707
  • 27. Li M., Haeri H., Reynolds A. 2017. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures. Golden, CO. National Renewable Energy Laboratory. http://www.nrel.gov/docs/fy18osti/70472.pdf, (accessed 27.03.21)
  • 28. Liikanen M., Havukainen J., Viana E., Horttanainen M. 2018. Steps towards more environmentally sustainable municipal solid waste management - A life cycle assessment study of São Paulo, Brazil. Journal Cleaner Production, 196, 150–162. https://doi.org/10.1016/j.jclepro.2018.06.005
  • 29. Lund R. 2021. Energy System Benefits of Combined Electricity and Thermal Storage Integrated with District Heating. International Journal of Sustainable Energy Planning and Management, 31, 23–38. http://doi.org/10.5278/ijsepm.6273
  • 30. Malovanyy M., Korbut M., Davydova L., Tymchuk I. 2021. Monitoring of the Influence of Landfills on the Atmospheric Air Using Bioindication Methods on the Example of the Zhytomyr Landfill, Ukraine. Journal of Ecological Engineering, 22(6), 36–49. https://doi.org/10.12911/22998993/137446
  • 31. Moqbel S. 2012. Evaluating bioreactor landfill as an energy source. International Journal of Energy and Environmental Engineering, 12, 23–30. https://doi.org/10.1007/s40095-020-00350-4
  • 32. Nikkhah A., Khojastehpour M., Abbaspour-Fard M.H. 2018. Hybrid landfill gas emissions modeling and life cycle assessment for determining the appropriate period to install biogas system. Journal of Cleaner Production, 185, 772–780. https://doi.org/10.1016/j.jclepro.2018.03.080
  • 33. Okwu M.O., Samue O.D., Ewim D.R.E., Huan Z. 2021. Estimation of biogas yields produced from combination of waste by implementing response surface methodology (RSM) and adaptive neuro-fuzzy inference system (ANFIS). International Journal of Energy and Environmental Engineering, 12, 353–363. https://doi.org/10.1007/s40095-021-00381-5
  • 34. Oukili A.I., Mouloudi M., Chhiba M. 2022. Land-GEM Biogas Estimation, Energy Potential and Carbon Footprint Assessments of a Controlled Landfill Site. Case of the Controlled Landfill of Mohammedia-Benslimane, Morocco. Journal of Ecological Engineering, 23(3), 116–129. https://doi.org/10.12911/22998993/145410
  • 35. Pandyaswargo A.H., Onoda H., Nagata K. 2012. Energy recovery potential and life cycle impact assessment of municipal solid waste management technologies in Asian countries using ELP model. International Journal of Energy and Environmental Engineering, 3(28), 1–11. http://www.journal-ijeee.com/content/3/1/28
  • 36. Papadimitriou A., Vassiliou V., Tataraki K., Giannini E., Maroulis Z. 2020. Economic Assessment of Cogeneration Systems in Operation. Energies, 13, 2206. https://doi.org/10.3390/en13092206
  • 37. Piechota G. 2017. Biogas quality and cogeneration requirements in a CHP installation-raw material awareness, analysis of silicon-organic pollutants and methods of their removal. Forum Eksploatatora, 3, 52–55.
  • 38. Połomka J., Jędrczak A. 2020). RDF from Compost-Like-Output’s Produced in the MBT Installation in the Case of Marszów, Poland. Energies, 13, 4353. https://doi.org/10.3390/en13174353
  • 39. Purmessur B., Surroop D. 2019. Power generation using landfill gas generated from new cell at the existing landfill site. Journal of Environmental Chemical Engineering, 76(3), 103060. https://doi.org/10.1016/j.jece.2019.103060
  • 40. RENA 2018. Bioenergy from Finnish forests: Sustainable, efficient and modern use of wood. International Renewable Energy Agency, Abu Dhabi.
  • 41. Rostocki J. 2013. The energy indicators of micro-cogeneration systems. Scientific Journals of the University of Zielona Góra -Environmental Engineering, 147, 32–41. http://zbc.uz.zgora.pl/Content/45563/PDF/4_rostocki_energetyczne.pdf, (accessed 12.02.21), [in Polish]
  • 42. Skorek J. 2012. Technical and economical analysis of exploitation of gas fired small scale combined heat and power systems in Poland. Archiwum Energetyki, 1, 39–51. https://bibliotekanauki.pl/articles/172934, (accessed 10.11.21).
  • 43. Stanuch I., Sozańska M., Biegańska J., Cebula J., Nowak J. 2020. Fluctuations of the elemental composition in the layers of mineral deposits formed on the elements of biogas engines. Scientific Reports, 10, 4244. https://doi.org/10.1038/s41598-020-61212-x
  • 44. Statistica, version13.3, TIBCOI Software Inc. USA; 2017
  • 45. Themelis N.J., Ulloa P.A. 2017. Methane generation in landfills. Renewable Energy, 32, 1243–1257. https://doi.org/10.1016/j.renene.2006.04.020
  • 46. Vaverková W.D., Adamcová D. 2015. Evaluation of landfill leachate pollution: findings from a monitoring study at municipal waste landfill. Journal of Ecological Engineering 16(2), 19–32. https://doi.org/10.12911/22998993/1855
  • 47. Wasąg J., Grabarczyk M. 2021. Copper Film Modified Glassy Carbon Electrode and Copper Film with Carbon Nanotubes Modified Screen-Printed Electrode for the Cd(II) Determination, Materials, 14(18), 5148. https://doi.org/10.3390/ma14185148
  • 48. Winquist E., Rikkonen P., Pyysiäinen J., & Varho V. 2019. Is biogas an energy or a sustainability product? Business opportunities in the Finnish biogas branch. Journal Cleaner Production 233, 1344–1354. https://doi.org/10.1016/j.jclepro.2019. 06.181.
  • 49. Winslow K.M., Laux S.J., & Townsend T.G. 2019. An economic and environmental assessment on landfill gas to vehicle fuel conversion for waste hauling operations. Resources, Conservation and Recycling 142, 155–166. https://doi.org/10.1016/j.resconrec.2018.11.021
  • 50. Wysowska E., Wiewiórska I., & Kicińska A. 2021. The impact of different stages of water treatment process on the number of selected bacteria. Water Resources and Industry 26,100167, https://doi.org/10.1016/j.wri.2021.100167.
  • 51. Wysowska, E., Kudlik K., & Kicińska A. 2020. Bacteriological health threats to water in home wells. Archives of Environmental Protection 46, 21–34. https://doi.org/10.24425/aep.2020.133471.
  • 52. Ziębik A., & Gładysz P. 2017. System effects of primary energy reduction connected with operation of the CHP plants. Archives of Thermodynamics 38,61–79. https://doi.org/10.1515/aoter-2017-0010
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8917db43-b81f-45a7-a515-3a85bc172e46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.