PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Buffer Effects in Submersed Denitrifying Biofilter

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high content of nitrates in drinking water leads to serious diseases. The creation of biofiltering devices with the longest time of their operation between preventive flushes is extremely important. The purpose of this study was to investigate the features of the functioning of the developed U-shaped submersible denitrifying biofilter during its long-term operation in the piston filtration mode. The denitrification of water by using the method of displacement (piston) biofiltration in a submersible small U-shaped biofilter with immovable carriers of attached microflora in its filter load was studied. As a result, clogging of the pore space of the biofilter in the zone of excess bacterial nutrition is prevented and the vital activity of bacteria is maintained in places where there is no nutrient substrate. It has been shown that, due to adaptive mechanisms, denitrifying bacteria convert nitrate ions into gaseous nitrogen, consuming extracellular polymeric substances. The rate constants of the reaction of reduction of nitrates to molecular nitrogen in different zones of the biofilter under different filtration modes were determined. The activity of the microflora inside the biofilter quickly returns to its original level when a full-fledged external nutrition is resumed. The efficiency of nitrate to nitrogen conversion in the studied biofilter is 94.2±8.9%.
Rocznik
Strony
145--154
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
  • Ukrainian State University of Chemical Technology, Haharina Ave 8, Dnieper, Dnipropetrovsk Oblast, 49000, Ukraine
  • Ukrainian State University of Chemical Technology, Haharina Ave 8, Dnieper, Dnipropetrovsk Oblast, 49000, Ukraine
  • Research Institute of Ecology and Biology, Shymkent University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
  • South Kazakhstan Medical Academy, Al-Farabi Square 1, Shymkent, 160001, Kazachstan
autor
  • M. Auezov State University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
  • Research Institute of Ecology and Biology, Shymkent University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
  • Research Institute of Ecology and Biology, Shymkent University, Tauke Khan Ave 5, Shymkent, 160012, Kazakhstan
Bibliografia
  • 1. Abascal E., Gómez-Coma L., Ortiz I., Ortiz A., 2022. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Science of The Total Environment, 810, 152233. https://doi.org/10.1016/j.scitotenv.2021.152233
  • 2. Adimalla N., Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and environmental safety, 176, 153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066
  • 3. Alyamani E.J., Booq R.Y., Bahkali A.H., Alharbi S.A. 2020. Biological Removal of Nitrates from Groundwater Resources in Saudi Arabia. J Pure Appl Microbiol, 14(3), 2203–2213. https://doi.org/10.22207/JPAM.14.3.61
  • 4. Bastani M., Harter T. 2019. Source area management practices as remediation tool to address groundwater nitrate pollution in drinking supply wells. Journal of Contaminant Hydrology, 226, 103521. https://doi.org/10.1016/j.jconhyd.2019.103521
  • 5. Bergquist A.M., Choe Jong K., Strathmann T.J., Werth C.J. 2016. Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. WaterResearch, 96, 177–187. https://doi.org/10.1016/j.watres.2016.03.054
  • 6. Blackburn E.A.J., Emelko M.B., Dickson-Anderson S., Stone M. 2021. Advancing on the promises of techno-ecological nature-based solutions: A framework for green technology in water supply and treatment. Blue-Green Systems, 3(1), 81–94. https://doi.org/10.2166/bgs.2021.008
  • 7. Brender J.D., Weyer P.J. 2016. Agricultural Compounds in Water and Birth Defects. Curr Environ Health Rep., 3(2), 144–152. https://doi.org/10.1007/s40572-016-0085-0
  • 8. Brown J., Summers R.S., Le Chevallier M., Collins H., Roberson J.A., Hubbs S., Dickenson E. 2015. Biological Drinking Water Treatment? Naturally. Journal American Water Works Association, 12(107), 20–30. https://doi.org/10.5942/jawwa.2015.107.0183
  • 9. Calderer M., Jubany I., Pérez R., Martí V., de Pablo J. 2010. Modelling enhanced groundwater denitrification in batch micrococosm tests. Chem. Eng. J., 165(1), 2–9. https://doi.org/10.1016/j.cej.2010.08.042
  • 10. Cheikh A., Grib H., Drouiche N., Abdi N., Lounici H., Mameri N. 2013. Water denitrification by a hybrid process combining a new bioreactor and convention a lelectro dialysis, Chemical Engineeringand Processing: Process Intensification, 63, 1–6. https://doi.org/10.1016/j.cep.2012.11.004
  • 11. Flemming H.C., Wingender J. 2010. The biofilm matrix. Nature reviews. Microbiology, 8(9), 623–633. https://doi.org/10.1038/nrmicro2415
  • 12. Gevod V.S., A.S. Chernova A.S. 2021. Water denitrification by displacement biofiltration: transition of designed biofilter to the stationary mode. Voprosykhimiiikhimicheskoitekhnologii, 4, 21–26. https://doi.org/10.32434/0321-4095-2021-137-4-21-26
  • 13. Jensen V.B., Darby J.L., Seidel C., Gorman C. 2014. Nitrate in Potable Water Supplies: Alternative Management Strategies, Critical Reviews in Environmental Science and Technology, 44(20), 2203–2286. https://doi.org/10.1080/10643389.2013.828272
  • 14. Xin J., Wang Y., Shen Z., Liu Y., Wang H., Zheng X. 2021. Critical review of measures and decision support tools for groundwater nitrate management: A surface-to-groundwater profile perspective. Journal of Hydrology, 598, 126386. https://doi.org/10.1016/j.jhydrol.2021.126386
  • 15. Issayeva A., Abubakirova A., Syzdykova M., Arystanova S., Anlamasova G., Zhumakhanova R., Leska B. 2022. Fe2(SO4)3 and Bentonite Use to Reduce COD Indicators in Wastewater Containing Detergents. Journal of Ecological Engineering, 23(3), 68–73.
  • 16. Khera R., Ransom P., Guttridge M., Speth T.F. 2021. Estimatingcostsfornitrateandperchloratetreatmen tforsmalldrinkingwatersystems. AWWA WatSci, 3(2), e1224. https://doi.org/10.1002/aws2.1224
  • 17. Kim Y.N., Kim M.Y., Choi M. 2016. Synergistic integration of catalysis and ion exchange for highly selective reduction of nitrate into N2. Chemical Engineering Journal, 289, 423–432. (Multi-Language)
  • 18. Kirisits M.J., Emelko M.B., Pinto A.J. 2019. Applying biotechnology for drinking water biofiltration: advancing science and practice. Current opinion in biotechnology, 57, 197–204. https://doi.org/10.1016/j.copbio.2019.05.009
  • 19. Lee M.S., Lee K.K., Hyun Y., Clement T.P., Hamilton D. 2006. Nitrogen transformation and transport modeling in groundwater aquifers. Ecological Modelling, 192(1), 143–159. https://doi.org/10.1016/j.ecolmodel.2005.07.013
  • 20. Lin Y.H., Gu Y.J. 2020. Denitrification Kinetics of Nitrate by a Heterotrophic Culture in Batch and Fixed-Biofilm Reactors. Processes, 8(5), 547. https://doi.org/10.3390/pr8050547
  • 21. Marchesini F., Mendow G., Picard N., Zoppas F., Aghemo V., Gutierrez L., Querini C., Miró E. 2019. PdInCatalystsin a Continuous Fixed Bed Reactor fo rthe Nitrate Removal from Ground water. International Journal of Chemical Reactor Engineering, 17(6), 20180126. https://doi.org/10.1515/ijcre-2018-0126
  • 22. Martínezde Zabarte Fernández J.M, García Íñiguez J.P., Domínguez Cajal M. 2018. Metahemoglobinemia enlactantes mayores de unaño. Medicina Clínica (English Edition), 151(7), 278–280. https://doi.org/10.1016/j.medcle.2017.12.037
  • 23. Matei A., Racoviteanu G. 2021. Review of the technologies for nitrates removal from water intended for human consumption. IOP Conference Series: Earth and Environmental Science, 664, 012024. https://doi.org/10.1088/1755-1315/664/1/012024
  • 24. Mohseni-Bandpi A., Elliott D.J., Zazouli M.A. 2013. Biological nitrate removal processes from drinking water supply-a review. Journal of environmental health science & engineering, 11(1), 35. https://doi.org/10.1186/2052-336X-11-35
  • 25. Pirsaheb M., Khosravi T., Sharafi K., Mouradi M. 2016 Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalination and Water Treatment, 57(12), 5391–539. https://doi.org/10.1080/19443994.2015.1004592
  • 26. Richards J., Chambers T., Hales S., Joy M., Radu T., Woodward A., Humphrey A., Randal E., Baker M.G. 2022. Nitrate contamination in drinking water and colorectal cancer: Exposure assessment and estimated health burden in New Zealand. Environmental Research, 204(C), 112322. https://doi.org/10.1016/j.envres.2021.112322
  • 27. Rocher V., Mailler R., Mèche P., Pichon S., Bernier J., Guérin S., Ferro O., Augé A., Boursaud L., Bord G., Bulteau J., Azimi S. 2019. Clogging limitation of nitrifying biofilters: BiostyrDuo® process study. Water Practice and Technology, 14(1), 43–54. https://doi.org/10.2166/wpt.2018.107
  • 28. Rodríguez-Escales P., Folch A., Van Breukelen B., Vidal-Gavilán G., Sanchez-Vila X. 2016. Modeling long term Enhanced in situ Biodenitrification and induced heterogeneity in column experiments under different feeding strategies. Journal of hydrology, 538, 127–137. https://doi.org/10.1016/j.jhydrol.2016.04.012
  • 29. Roshanravan H., Borghei M., Hassani A.H., Vagheei R. 2021. Nitrate removal from drinking water wells by heterotrophic denitrification using citric acid as a carbon source and ozonation. Journal of Water and Wastewater, 31(7), 63–77. (in Persian) https://doi.org/10.22093/wwj.2020.201484.2928
  • 30. Ruiz-Bevia F., Fernandez-Torres M.J. 2019. Effective catalytic removal of nitrates from drinking water: An unresolved problem? Journal of Cleaner Production, 217, 398–408. https://doi.org/10.1016/j.jclepro.2019.01.261
  • 31. Sharma S., Bhattacharya A. 2017. Drinking water contamination and treatment techniques. Appl Water Sci, 7, 1043–1067. https://doi.org/10.1007/s13201-016-0455-7
  • 32. Sherris A.R., Baiocchi M., Fendorf S., Luby S.P., Yang W., Shaw G.M. 2021. Nitrate in Drinking Water during Pregnancy and Spontaneous Preterm Birth: A Retrospective Within-Mother Analysis in California. Environ Health Perspect, 129(5), 57001. https://doi.org/10.1289/EHP8205
  • 33. Shrestha S., Semkuyu D.J., Pandey V.P. 2016. Assessment of groundwater vulnerability and risk to pollution in Kathmandu Valley, Nepal. The Science of the total environment, 556, 23–35. https://doi.org/10.1016/j.scitotenv.2016.03.021
  • 34. Simonič M., Andreja Goršek A., Petrovič A. 2017. Nitrate Removal from Groundwater with Membrane Bioreactor, Nitrification and Denitrification, Ivan X. Zhu, IntechOpen, https://doi.org/10.5772/intechopen.68718.
  • 35. Taneja P., Labhasetwar P., Nagarnaik P., Ensink J. 2017. The risk of cancer as a result of elevated levels of nitrate in drinking water and vegetables in Central India. Journal of water and health, 15(4), 602–614. https://doi.org/10.2166/wh.2017.283
  • 36. Tokazhanov G., Ramazanova E., Hamid S., Bae S., Lee W. 2020. Advancesinthecatalyticreductio nofnitratebymetalliccatalystsforhighefficiencyand N2 selectivity: A review. Chemical Engineering Journal, 384, 123252. https://doi.org/10.1016/j.cej.2019.123252
  • 37. Ward M.H., Jones R.R., Brender J.D., de Kok T.M., Weyer P.J., Nolan B.T., Villanueva C. M., van Breda S.G. 2018. Drinking Water Nitrate and Human Health: An Updated Review. International journal of environmental research and public health, 15(7), 1557. https://doi.org/10.3390/ijerph15071557
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8915f934-4c03-4e29-b761-c88e8ee2a48c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.