PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Specialized, MSE-optimal m-estimators of the rule probability especially suitable for machine learning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an improved sample based rule- probability estimation that is an important indicator of the rule quality and credibility in systems of machine learning. It concerns rules obtained, e.g., with the use of decision trees and rough set theory. Particular rules are frequently supported only by a small or very small number of data pieces. The rule probability is mostly investigated with the use of global estimators such as the frequency-, the Laplace-, or the m-estimator constructed for the full probability interval [0,1]. The paper shows that precision of the rule probability estimation can be considerably increased by the use of m-estimators which are specialized for the interval [phmin, phmax] given by the problem expert. The paper also presents a new interpretation of the m-estimator parameters that can be optimized in the estimators.
Rocznik
Strony
133--160
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
  • Faculty of Computer Science and Information Systems, West Pomeranian University of Technology, Zolnierska 49, 71-210 Szczecin, Poland
autor
  • Maritime University of Szczecin, Waly Chrobrego 1-2, 70-500 Szczecin, Poland
Bibliografia
  • 1. CESTNIK, B. (1990) Estimating probabilities: A crucial task in machine learning. In: L. C. Aiello (Ed.), ECAI’90. Pitman, London, 147-149.
  • 2. CESTNIK, B. (1991) Estimating probabilities in machine learning. Ph.D. thesis, University of Ljubljana, Faculty of Computer and Information Science.
  • 3. CHAWLA, N. V. and CIESLAK, D. A. (2006) Evaluating calibration of probability estimation from decision trees. AAAI Workshop on the Evaluation Methods in Machine Learning, The AAAI Press, Boston, July 2006, 18–23.
  • 4. CICHOSZ, P. (2000) Systemy ucz¸ace si¸e (Learning systems). Wydawnictwo Naukowo–Techniczne, Warsaw, Poland.
  • 5. CUSSENS, J. (1993) Bayes and pseudo–bayes estimates of conditional probabilities and their reliabilities. In: Proceedings of European Conference on Machine Learning, ECML-93. LNCS 667, 136–152.
  • 6. FURNKRANZ, J. & FLACH, P. A. (2005) ROC ’n’ rule learning – towards a better understanding of covering algorithms. Machine Learning, 58(1), 39–77.
  • 7. HAJEK, A. (2010) Website: Interpretations of probability. The Stanford Encyclopedia of Philosophy (E.N. Zalta ed.). Available from: http://plato. stanford.edu/entries/probability-interpret/.
  • 8. LAROSE, D. T. (2010) Discovering Statistics. W. H. Freeman and Company, New York.
  • 9. LUTZ, H. and WENDT, W. (1998) Taschenbuch der Regelungstechnik. Verlag Harri Deutsch, Frankfurt am Main.
  • 10. MOZINA, M., DEMSAR, J., ZABKAR, J. and BRATKO, I. (2006) Why is rule learning optimistic and how to correct it. In: European Conference on Machine Learning, ECML 2006. LNCS 4212, 330–340.
  • 11. PIEGAT, A. and LANDOWSKI, M. (2012) Optimal estimator of hypothesis probability for data mining problems with small samples. Int. J. Appl. Math. Comput. Sci., 22, 3, 629–645.
  • 12. POLKOWSKI, L. (2002) Rough Sets. Physica-Verlag, Heidelberg, New York.
  • 13. ROKACH, L. and MAIMON, O. (2008) Data mining with decision trees, theory and applications. Machine Perception and Artificial Intelligence, 69. World Scientific Publishing Co. Pte. Ltd, New Jersey, Singapore.
  • 14. SIEGLER, R. S. (1976) Three Aspects of Cognitive Development. Cognitive Psychology, 8, 481–520.
  • 15. SIEGLER, R. S. (1994) Balance Scale Weight & Distance Database. UCI Machine Learning Repository. Available from: http://archive.ics.uci.edu/ ml/datasets/Balance+Scale.
  • 16. STARZYK, A. and WANG, F. (2004) Dynamic probability estimator for ma- chine learning. IEEE Transactions on Neural Networks, March 15(2), 298–308.
  • 17. SULZMANN, J. N. and FURNKRANZ, J. (2009) An empirical comparison of probability estimation techniques for probabilistic rules. In: J. Gama, V. S. Costa, A. Jorge, P. Brazdil, Proceedings of the 12th International Conference on Discovery Science (DS-09), Porto, Portugal. Springer-Verlag, 317–331.
  • 18. SULZMANN, J. N. and FURNKRANZ, J. (2010) Probability estimation and aggregation for rule learning. Technical Report TUD-KE-201-03, TU Darmstadt, Knowledge Engineering Group.
  • 19. WITTEN, I. H. and FRANK, E. (2005) Data Mining. Second edition, Elsevier, Amsterdam.
  • 20. ZADROZNY, B. and ELKAN, C. (2001) Learning and decision making when costs and probabilities are both unknown. In: Proceedings of the Seventh International Conference on Knowledge Discovery and Data Mining. San Francisco, August 2001. ADM, 204–213.
  • 21. ZHANG, Z. (1995) Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting. M estimators. INRIA. Available from: http:// research.microsoft.com/enus/um/people/zhang/INRIA/Publis/Tutorial Estim/Main.html.
  • 22. ZIARKO, W. (1999) Decision making with probabilistic decision tables. In: N. Zhong, ed., RSFDGrC’99 Proceedings of the 7th International Workshop on New Directions in Rough Sets, Data Mining, and Granular-Soft Computing, Yamaguchi, Japan. Springer-Verlag, Berlin, Heidelberg, New York, 463–471.
  • 23. VON MISES, R. (1957) Probability, Statistics and the Truth. Macmillan, Dover, New York.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89119988-bc62-412e-a558-22600856e456
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.