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THE FASTEST MOTION OF A POINT
ON THE PLANE

Abstract
This paper provides an analysis of time optimaltagrproblem of motion of a material point on
the plane, without friction. The point is contralléy a force whose absolute value is limited. i th
analysis of this problem, the maximum principlapglied

INTRODUCTION

A material point (a car) of the mass equal to orwes on the plane without friction. The
point is controlled by a force whose absolute vadulemited by one. The initial position and
the initial vector of velocity are also given. $tnecessary to minimize time of the motion. We
offer a complete solution to the problem.

Let the position of the point at time be x(t)=(x1(t),x2(t))D]R2 and its velocity
y(t) =( (1), ,()) OR?. Let the value of the force at tintebe u(t) =(u(t), u,()) OR?.

There is a control constraifi(t)| <1, where |u[=,/(u,u). The trajectory(x(t), y(t)) must
satisfy the endpoint constraints: at the initiahdit =0, the initial positionx(0)is equal to
%, O0R?and the initial velocityy(0) is equal toy, OR?; at the final timet =T, the final
position x(T) is equal toX, JR?and the final velocityy(T) is equal toy, JR®. It necessary

to minimize the time of the procesk. Since m=1, by the Newton law we have
u(t) = X(t) = W) . Thus, the problem has the form:

T - min, (1)
subject to the constraints

x=y, y=u U<y,

X(0)=%, x(M=%, Y0)="y, YN="y
where xOR?, yOR?, udR?, M:m One-dimensional version of this problem was
studied, e.qg., in [1],[2],[3]. We will study two4tliensional case.

(2)

1. MAXIMUM PRINCIPLE
Let  (x(t),y(),u(h[tD[0,T]) be a soluton to the problem. Let

z//XD(RZ)* ,wyD(RZ)* W, OR*, where (]RZ)* is the space of two-dimensional rowvectors. Set
H =y, y+y u+y,. Condition of the maximum principle [3] have therh:
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4,=H,=0, -¢,=H =y, -¢=H=0,

¢ (T)=0a,20, H=¢,y+y u+y =0, (3)
maxpv =i, (w,)%(0.9

wherey, andy, are absolutely continous functions. It followsttltze functiony, is equal

to the non-positive constafita,) .
Obviously, conditions (3) of the maximum principlee equivalent to the following system
of conditions:

W, =0, g, =y, Yy +Pu=a,20, u=‘g—y it g, 20. @)

J
Let us add the following conditions to this system

X=y, Vy=u ©))
Thus obtained new system (4) and (5) we eafiendedA pairs (x,u) such that there exists a
pair (l//x,l//y) , satisfying to the expanded system, we Balhtryagin’'s extremalWe will seek

for Pontryagin’s extremals without worrying abowoththey satisfy the boundary conditions.
Let us note that the last two conditions of sys{éjrimply

wxy+‘wy‘:a020' (6)
This conditio holds for alt0[0,T], but, as is known, it suffices to check this ctiedbnly at
one point of the interval. This remark will be usedhe sequel.

2. EQUATIONS OF MOTION
Let us study the expended system on an inte&a[0,T]:
@,=0, ~¢,=¢,, (wp,)%00), gy+jp|=a,20
u= |gi| it @, #0, X=y, y=u 0
The first two conditions imply thap, is a constant vector, whilg, is a linear function, i.e.,
W, =kt+b, ¢, =~k K+8>0, (8)

wherek,bdR?. The following two cases are possible.
1) The functionyg, does not vanish oA. In this case

kt+b
w0 =gy (©)
Is a continous function, and the motion is uniquidyined by the conditions:
kt+b
X(1) = y(t), AY=uY= : =
kg’ {t)=% X8)= ¥ (10)

~ky, +| ki, + 420, K+ >0, | kt- b>0, $0A.
In oreder to find one of such extremals, one hashtiose arbitrark,b, x,, y OR? andt, so
that the following conditions hold

~ky, +|kt, + B=0, K+ B>0, | ki+ pb>0, (11)
and then to solve a system
(0= y(), UH=up= | b| {t)=% 8=y (12)

To the left and to the right from the poigtuntil the following conditio hold
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[kt+H>0. (13)
The intervalA can be chosen as the maximal interval such tleatdhditio (13) is fulfiled.
2) The functiony, vanishes at a pointdA, and hencey, has the formy, =k(t-7), where

kOR? k#0. In this case

u(t) = K°sign(t-7), K° =ﬁ , (14)
i.e., that functionu(t) is piecewise costant, taking only two valuésind -k° and having one

switching at the pointr (the so-called bang-bang control). Essentiallys tis a one-

dimensional case, very similar to the time optioaitrol problem of the form
T _.mlAn, X = y,Ay= U |L|lf 1, A (15)
X0)=%, x(M=%, X0)=7Y, AD="y

where x, y,udR".

But let us return to our problem. In the considerase, the conditiom, >0 is equivalent to

the following one:-ky =0, wherey. = y(r). In order to obtain an extremal of this type, one

has to choose arbitrak?, x , y OR? andr so that the consitions

k%=1 K%y <0, ¥>r, (16)
hold, and then to solve a system
X® =y, AY=ud=Ksign(t-7), x¢)= x, W)=y (17)

To the left and to the right of the poit

Consider a system of more general fprm, with switglof the contro lat a point and
with initial data given at a poirtt (which may be different from the poin):

X()=y®, WO=ud=Ksign(t-7), ()= %, W§)= ¥ (18)
System (17) is easily integrable. Consider an watlen =(t',t") such thatrOA. In this case
signt-7)is a constant onAequal to o, where og=+1. Assume thatt,JA. Conditions

y=u=Ko, y(t)= y imply
)= 20 1) + (- 1) + %, (19)

We have studied the case, whdre —kr, i.e.,k andb are linearly dependent. In the case,
wherek and b are linearly independent, the integration of eiumat for x andy is more
difficult, although againx(t) and y(t) can be expressed in terms of elementary functicets.

us find formulas forx(t) and y(t) in the latter case.

3. INTEGRATION OF EQUATIONS OF MOTION IN THE CASE
OF LINEARLY INDEPENDENT k AND b

This motion is defined by equations (12):

X(t) = (1), y(t>=uo=ﬁ, (5)=% {8)=y 007

where t,0(0,T). We assume that and b are linearly independent and then (taking into
account the possibility of multiplication by a pige constant) we can represent the function
@, =kt+b in the formy, =A(t-t,)k, +b, where AOR, A#0, b, OR?, || =1, k, = Ah. Here

A'is the rotation matrix by the angge counterclockwise:
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=3 o)

Note thaty, (t,) =b, = u(t,) . Denoteu, := u(t,). It is convenient to use the complex plane so
that the real axis isu, while the imaginary axis isu,. Then u=uy+iuy,.
Let a(t) =g(t) +ap, #(t) =0, U= u(t) =e* = b, )= &= #O = yieo,
tio
tan @
‘E':U

73

k]

oanbo = ug
(*8] (751

Pic. 1. Plane of control

It is clear that (see the picture ang ¢)=A4(t-t,), and hencep(t) =arctand (t -t,) . Since
Y- y €, we have

~dg dt

dy _ dt u,e” .

d¢ d¢
Moreover, the conditionang ¢)=A(t-t,) implies that

dy__ 1

dg Acos¢
Thus

da__ Yy

06 Ac0dd (cosp +i sinp).
Consequently,

_U( 1 . sing
Y (cos¢ i co§¢Jd¢

Whence

_U(p 1 .r Sing
y—7U cosp g+ II co$¢ d¢)

Let us calculate the integrals in the real and imagy parts of this expression. We have

¢
Isin¢ dg¢ = L e Id¢ =In1+tar3+c.
cos ¢ cogp cog 1—tang

Consequently
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ST

1+ tan’™-

+ ! +C,
cosp

S

1-tan-

N

whereC=C, +iC,. Since¢(t,) =0, we havey, = y(t,) = 'j‘) +C, whenceC =y, - )I . Thus.

We get
u 1+tan£ i iu
=t 2y (20)
M it | cost | T
2
or
1+tan£ P
y=—"2 In—£+itan—tar¢ +Y,,
A 1—tark2 2

Taking into account thaty=y, +iy,, u,=cosw,+isinw,, y,= y,,+iy,, We obtain the
following expressions for, andy, in Cartesian coordinates:

v :;1 cosw, | - sinw, tar% tag [+ Yy,

¢ =arctami (t-t,)

Furthermore, sincex=y, we have%_ﬂ -1

a9 d¢ ACO§¢y. This combined with (20)

implies
U 1+tan% [ /ly
d R I d £ :
X N cog ) nl_tanﬂJrcogb o+ o%¢d¢
2
Consequently,
a
1+ tan-
x=%| [in i[NP (21)
A 1—tan§ cog ¢ codg cosp
Let us calculate the integrals in this expressWwia.have
I%ztamﬂc, (22)
_ [ cosp d sinp
: 23
Icos?¢> jCoti‘»¢ I(1—sin2¢)2 (23)
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In order to calculate the latter integral, let umlfthe integralj%. Using the method of
z-1

undetermined coefficients, we obtain

1 1 1 1 1 1
== - + + + )
(22_1)2 4 z-1 (z-1y z=1 (=z1f
Integrating this function we get

d 1z, 1 2
I(Zz_l)z—4|n|z_1|+2D1_22+C.

Consequently,
I dsing 2 =—1In|1+ s.|r¢|+_1D S
(1_ Sirt ¢) 4 |1-sing| 2 codg
This combined with (23) implies
dg _1, |1+sing| 1_sinp
Ico§¢ 4In| T+ sinyﬁ|+ ZD cdsp e
We deduce from this that

4
1+ tan*- .
2|, 1sing |

dg _1
== C. 24
Ico§¢ Zn‘l—tang‘ 2 codp (24)
2
Other integral in (21) can be found by integratoygparts
1+ tan% dg J_ 1+ tar%
In =|In dtang =
1—tan£ cos' ¢ 1- tarﬁ
2 2
1+tang j 1+ tan%
=In tang — | tarpd - | =
1—tan£ - tarﬁ
2 2
1+tan£ 1+ ta,$ 1
=In ; tang - [ tang 2 _dg =
2 2 2 2
1+ tan%
=In tang - +C.
1—tan§ 1- taﬁg

We have considered the casetanz% > C. Similarly one can analyze the caﬂsetarf%< C.

As result we get

1+tan£‘ d¢ 1+ tarﬁ
In 2 2 =In 2 tang — P +C. (25)
1—tark2 cos ¢ 1- tar«% t taQrF2

Relations (21), (22), (24), and (25) imply
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¢ J rg‘
1+tan- I+ ta
x=—24tang In 2 + 2- 2 ¢+l I S'g¢ +)Iy02u0 tang + X,
1—tarE 1- taA ‘ t talg cos ¢ A
Moreover,
2tar12£
2- 2 P - 2¢ =—tang tar7£
1-taf >  1- tad~
2 2
Consequently,
¢ L P
1+tan- . 1+ ta . .
x=—24tang In 2 - tang ta|$+l [ + Slr? +/1y0 2|u0 tag + X, .
1-tan- 2 2 ‘1— ta|$ cos ¢ A
2 2
It follows that
1+tan£ P i 1+ tarﬂﬁ‘ tang
x=—24tang| In s —-tan- [+—| | 24 - 2tag |+
1-tan 2| 2 [1— tar%‘ cosp (26)

+%tan¢+xo, ¢ = arctan (t-t,)

Taking into account thatx=x +ix,, U,=Cosw,+ iSinw,, X,= X+ Xy, Yo= Yigt Yo WE
obtain for Cartesian coordinatesand x, :

- 1+ tarﬂﬁ
- tag _ Sing, IL 2

2 2° ‘Il— tar%

ML A
cosp 2

+%tan¢ X,

? i
1+tan- I+ ta
X :isin%tamﬁ I——2] - tandi +COS¢0 I 214 tap _ 2tag +
2 2 2
A 1-tan? 2| 2 - taf| coP 2
2 2

+%tan¢ + X0 5

where ¢ =arctanl (t-t,).
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NAJSZYBSZY RUCH PUNKTU
NA PLASZCZY ZNIE

Streszczenie
W artykule zrobiono anakz zadania sterowania optymalnego dote=mgo ruchu punktu
materialnego na ptaszcayie, ktéry odbywa sibez tarcia. Punkt jest sterowany za pomaeady
ograniczonej. W analizie tego problemu wykorzysteagag maksimum Pontryagina
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