PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Configuration of the parameters for scanner-based track detector evaluation system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
III International Conference „Radon in the Environment” (3 ; 27-31 May 2019 ; Krakow, Poland)
Języki publikacji
EN
Abstrakty
EN
According to the new European Union Basic Safety Standards (EU-BSS), preparation of the National Radon Action Plan is obligatory for the Member States. One of the plan’s aims is to carry out an indoor radon survey to identify radon-prone areas. In the radon surveys, track detector methods are used. At the University of Pannonia (Veszprém, Hungary), a new scanner-based detector evaluation system has been developed. For the application of the new system, the selection of appropriate parameters is necessary. In this study, selection of the applied track detectors and setting of the etching conditions have been carried out. Two different types of allyl diglycol carbonate (ADC or CR-39) track detectors were investigated, taking into account the detector’s background and response during the exposure (determination of calibration factor). The Baryotrak’s background track density (0–1.5 tracksmm–2) was lower than that of the 0.8–4 tracksmm–2. The response of the Tastrak was higher, but the deviation of the calibration factor was much higher (1.2–5.3 × 10–3 tracksmm–2/(Bqdaym–3)) than in the case of the Baryotrak (1.4–2.8 × 10–3 tracksmm–2/(Bqdaym–3)). After the systematic review of the etching system, a new method was developed. For the determination of the optimal track diameter, the argon fluoride (ArF) laser was applied to create tracks with diameters in the range of 10–100 µ. The optimum track size was in the range of 40–60 µ. On this basis, new etching conditions were determined: 6.25 M NaOH solution, a temperature of 90 degree centigrade, and time period of 8 hours.
Czasopismo
Rocznik
Strony
133--137
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
  • Institute of Radiochemistry and Radioecology University of Pannonia Egyetem 10 St., H-8200 Veszprém, Hungary
  • Social Organisation for Radioecological Cleanliness József Attila 7/A 2/10 St., H-8200 Veszprém, Hungary
  • Institute of Radiochemistry and Radioecology University of Pannonia Egyetem 10 St., H-8200 Veszprém, Hungary
  • Institute of Radiochemistry and Radioecology University of Pannonia Egyetem 10 St., H-8200 Veszprém, Hungary
  • Social Organisation for Radioecological Cleanliness József Attila 7/A 2/10 St., H-8200 Veszprém, Hungary
Bibliografia
  • 1. United Nations Scientifi c Committee on the Effects of Atomic Radiation. (2000). Sources and effects of ionizing radiation. United Nations Scientifi c Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. 1: Sources. New York: United Nations.
  • 2. Podstawczyńska, A., & Pawlak, W. (2016). Soil heat flux and air temperature as factors of radon (Rn-222) concentration in the near-ground air layer. Nukleonika, 61(3), 231–237. DOI: 10.1515/nuka-2016-0039.
  • 3. Gregorič, A., Vaupotič, J., Kardos, R., Horváth, M., Bujtor, T., & Kovács, T. (2013). Radon emanation of soils from different lithological units. Carpath. J. Earth Environ. Sci., 8(2), 185–190.
  • 4. Chalupnik, S., & Wysocka, M. (2003). Measurement of radon exhalation from soil – development of the method and preliminary results. J. Mining Sci., 39, 191–198. https://doi.org/10.1023/B:JOMI.0000008467.53630.09.
  • 5. Wysocka, M., Kotyrba, A., Chalupnik, S., & Skowronek, J. (2005). Geophysical methods in radon riskstudies. J. Environ. Radioact., 82(3), 351–362. DOI:10.1016/j.jenvrad.2005.02.009.
  • 6. Kovács, T., Shahrokhi, A., Sas, Z., Vigh, T., & Somlai,J. (2017). Radon exhalation study of manganese clay residue and usability in brick production. J. Environ. Radioact., 168, 15–20. https://doi.org/10.1016/j.jenvrad.2016.07.014.
  • 7. Sas, Z., Somlai, J., Szeiler, G., & Kovács, T. (2015).Usability of clay mixed red mud in Hungarian building material production industry. J. Radioanal. Nucl.Chem., 306(1), 271–275. https://doi.org/10.1007/s10967-015-3966-z.
  • 8. Wieprzowski, K., Bekas, M., Waśniewska, E., Wardziński, A., & Magiera, A. (2018). Radon 222Rn in drinking water of West Pomeranian Voivodeship and Kuyavian-Pomeranian Voivodeship, Poland. Nukleonika, 63(2), 43–46. DOI: 10.2478/nuka-2018-0005.
  • 9. Jobbágy, V., Altzitzoglou, T., Malo, P., Tanner, V., & Hult, M. (2017). A brief overview on radon measurements in drinking water. J. Environ. Radioact., 173, 18–24. https://doi.org/10.1016/j.jenvrad.2016.09.019.
  • 10. Dixon, D. W. (2001). Radon exposures from the use of natural gas in buildings. Radiat. Prot. Dosim., 97(3), 359–364. DOI: 10.1093/oxfordjournals.rpd.a006671.
  • 11. European Union. (2013). Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, OJ L13,17.1.2014, 1–73. https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=OJ:L:2014:013:TOC.
  • 12. Somogyi, Gy., Nikl, I., Csige, I., & Hunyadi, I. (1989).Radon aktivitáskoncentrációjánakméréseés a belég zésbőleredősugárterhelésmeghatározásahazailakás oklégterében. Izotóptechnika, diagnosztika, 32(4), 177–183.
  • 13. Nikl, I. (1996). The radon concentration and absorbed dose rate in Hungarian dwellings. Radiat. Prot. Dosim., 67(3), 225–228. https://doi.org/10.1093/oxfordjournals.rpd.a031821.
  • 14. International Commission on Radiological Protection.(1993). Protection against radon-222 at home and at work. (ICRP Publication 65). Ann. ICRP, 23(2).
  • 15. Hámori, K., Tóth, E., Lénárd, P., Köteles, G., Losonci, A., & Minda, M. (2006). Evaluation of indoor radon measurements in Hungary. J. Environ. Radioact., 88, 189–198. https://doi.org/10.1016/j.jenvrad.2006.02.002.
  • 16. Szeiler, G., Somlai, J., Ishikawa, T., Omori, Y., Mishra,R., Sapra, B. K., Mayya, Y. S., Tokonami, S., Csordás, A., & Kovács, T. (2012). Preliminary results from an indoor radon thoron survey in Hungary. Radiat. Prot. Dosim., 152, 243–246. DOI: 10.1093/rpd/ncs231.
  • 17. Müllerova, M., Kozak, K., Kovács, T., Csordás, A.,Grzadziel, D., Holy, K., Mazur, J., Moravcsík, A., Neznal, Matej, Neznal, Martin, & Smetanova, I. (2014).Preliminary results of indoor radon survey in V4 countries. Radiat. Prot. Dosim., 160(1/3), 210–213.https://doi.org/10.1093/rpd/ncu081.
  • 18. Müllerova, M., Kozak, K., Kovács, T., Smetanova,I., Csordás, A., Grzadziel, D., Holy, K., Mazur, J.,Moravcsík, A., Neznal, Martin, & Neznal, Matej (2016). Indoor radon survey in Visegrad countries.Appl. Radiat. Isot., 110, 124–128. https://doi.org/10.1016/j.apradiso.2016.01.010.
  • 19. Müllerova, M., Mazur, J., Csordás, A., Grzadziel, D.,Holy, K., Kovács, T., Kozak, K., Kurekova, P., Nagy,E., Neznal, M., & Smetanova, I. (2017). Preliminary results of radon survey in the kindergartens of V4 countries. Radiat. Prot. Dosim., 177(1/2), 95–98.https://doi.org/10.1093/rpd/ncx155.
  • 20. Csordás, A., Bátor, G., Horváth, D., Somlai, J.,& Kovács, T. (2016). Validation of the scanner based radon track detector evaluation system.Radiat. Meas., 87, 1–7. https://doi.org/10.1016/j.radmeas.2016.02.011.
  • 21. Nikezic, D., & Yu, K. N. (2004). Formation and growth of tracks in nuclear track materials. Mater.Sci. Eng., 46, 51–123. https://doi.org/10.1016/j.mser.2004.07.003.
  • 22. Matiullah, , Rehman, S., Rehman, S., Mati, N., & Ahmad, S. (2005). Some more new etchants for CR-39 detector. Radiat. Meas., 39, 551–555. DOI: 10.1016/j.radmeas.2004.10.009.
  • 23. Ashry, A. H., Abdalla, A. M., Rammah, Y. S., Eisa,M., & Ashraf, O. (2014). The use of CH3OH additive to NaOH for etching alpha particle tracks in a CR-39 plastic nuclear track detector. Radiat. Phys.Chem., 101, 41–45. https://doi.org/10.1016/j.radphyschem.2014.03.037.
  • 24. Bátor, G., Csordás, A., Horváth, D., & Kovács, T.(2015). A comparison of a track shape analysis-based automated slide scanner system with traditional methods. J. Radioanal. Nucl. Chem., 306(1), 333–339.https://doi.org/10.1007/s10967-015-4013-9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-890cb405-c496-44d3-89a2-181fd0139edd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.