PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The sensitivity of contact stresses in the mandibular premolar region to the shape of Zirconia dental implant: A 3D finite element study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Implant thread profile plays a vital role in magnitude and distribution of contact stresses at the implant-bone interface. The main goal of this study was to evaluate the biomechanical effects of four distinct thread profiles of a dental implant in the mandibular premolar region. Methods: The dental implant represented the biocompatible Zirconia material and the bone block was modelled as transversely isotropic and elastic material. Three-dimensional finite element simulations were conducted for four distinct thread profiles of a dental implant at 50%, 75%, and 100% osseointegration. An axial static load of 500 N was applied on the abutment surface to estimate the stresses acting within the bones surrounding the implant. Results: Regions of stress concentration were seen mostly along the mesiodistal direction compared to that in the buccolingual direction. The cortical bone close to the cervical region of the implant and the cortical bone next to the first thread of the implant experienced peak stress concentration. Increasing the degree of osseointegration resulted in increased von-Mises stresses on the implant-cortical transition region, the implant-cancellous transition region, the cortical bone, and the cancellous bone. Conclusion: The results show that the application of distinct thread profiles at different degrees of osseointegration had significant effect on the stresses distribution contours in the surrounding bony structure. Comparing all four thread profiles, a dental implant with V-thread profile induced lower values of von-Mises stresses and shear stresses on the implant-cortical transition region, implant-cancellous transition region, cortical bone, and cancellous bone.
Rocznik
Strony
55--63
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering, SSN College of Engineering, Chennai, Tamil Nadu, India 603110
autor
  • Department of Mechanical Engineering, SSN College of Engineering, Chennai, Tamil Nadu, India 603110
  • Department of Mechanical Engineering, SSN College of Engineering, Chennai, Tamil Nadu, India 603110
Bibliografia
  • [1] Misch CE. Dental Implant Prosthetics. St Louis: Mosby, 2005:322-347.
  • [2] Brunski JB. In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res. 1999;13:99-119.
  • [3] Geng JP, Ma QS, Xu W, et al. Finite element analysis of four thread-form configurations in a stepped screw implant. J Oral Rehabil. 2004;31(3):233-239.
  • [4] Eraslan O, Inan O. The effect of thread design on stress distribution in a solid screw implant: A 3-D finite element analysis. Clin Oral Investig. 2010;14(4):411-416.
  • [5] Brånemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983;50(3):399-410.
  • [6] Natali AN, Pavan PG, Ruggero AL. Analysis of bone–implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 2006. 17(1):67-74.
  • [7] Faegh S, Chou HY, Muftu S. Load transfer along the bone-implant interface and its effects on bone maintenance. In: Turkyilmaz I (ed). Dental Implants: A Rapidly Evolving Practice. Rijeka, Croatia: InTech Publishing, 2011:163-190.
  • [8] Kurniawan D, Nor FM, Lee HY, et al: Finite element analysis of bone implant biomechanics refinement through featuring various osseointegration conditions. Int J Oral Maxifollac Surg. 2012;41(9):1090-1096.
  • [9] Kong L, Hu K, Li D, et al. Evaluation of the cylinder implant thread height and width: A 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2008;23(1):65-74.
  • [10] Gultekin BA, Gultekin P, Yalcin S. Application of finite element analysis in implant dentistry. In: Ebrahimi F (ed). Finite Element Analysis: New Trends and Developments. Rijeka, Croatia: InTech Publishing, 2012:21-54.
  • [11] Bona AD, Pecho OE, Alessandretti R. Zirconia as a Dental Biomaterial. Materials (Basel). 2015;8(8):4978-4991.
  • [12] Apicella D, Joda T, Bonadeo G, et al. Case-specific finite element analysis of dental CAD/CAM prostheses to identify design flaws prior to manufacture. Am J Dent. 2016;29(6):339-344.
  • [13] Shriram D, Praveen Kumar G, Cui F, et al. Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep. 2017;7(1): 6011.
  • [14] Shriram D, Parween R, Lee YHD, et al. Effects of counteracting external valgus moment on lateral tibial cartilage contact conditions and tibial rotation. Conf Proc IEEE Eng Med Bio Soc 2017; 2017:1625-1628.
  • [15] Shriram D, Kumar GP, Lee YHD, et al. Effect of posterior root tear of the lateral meniscus on the articular cartilage during the stance phase of gait cycle: a finite-element study. Proceedings of XXVI Congress of the International Society of Biomechanics 2017.
  • [16] Winter W, Klein D, Karl M. Effect of model parameters on finite element analysis of micromotions in implant dentistry. J Oral Implantol 2013;39(1):23-29.
  • [17] Abuhussein H, Pagni G, Rebaudi A, et al. The effect of thread pattern upon implant osseointegration. Clin Oral Implants Res. 2010;21(2):129-136.
  • [18] Ao J, Li T, Liu Y, et al. Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis. Comput Biol Med. 2010;40(8):681-686.
  • [19] Liu TC, Chang CH, Wong TY, et al. Finite element analysis of mini screw implants used for orthodontic anchorage. Am J Orthod Dentofacial Orthop. 2012;141(4):468-476.
  • [20] Lekholm U, Zarb GA. Patient selection and preparation. In: Brånemark PI, Zarb GA, Albrektsson T (eds). Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry. Chicago: Quintessence, 1985:199-209.
  • [21] O’Mahony AM, Williams JL, Spencer P. Anisotropic elasticity of cortical and cancellous bone in the posterior mandible increases peri implant stress and strain under oblique loading. Clin Oral Implants Res. 2001;12(6):648-657.
  • [22] Dechow PC, Nail GA, Schwartz-Dabney CL, et al. Elastic properties of human supraorbital and mandibular bone. Am J Phys Anthropol. 1993;90(3):291-306.
  • [23] O’Mahony AM, Williams JL, Katz JO, et al. Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clin Oral Implants Res. 2000;11(5):415-421.
  • [24] Guazzato M, Albakry M, Ringer SP, et a:. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater. 2004;20(5):449-456.
  • [25] Giannuzzi LA, Phifer D, Giannuzzi NJ, et al. Two-dimensional and three-dimensional analysis of bone/dental implant interfaces with the use of focused ion beam and electron microscopy. J Oral Maxillofac Surg. 2007; 65(4):737-747.
  • [26] Gotfredsen K, Berglundh T, Lindhe J. Anchorage of titanium implants with different surface characteristics: An experimental study in rabbits. Clin Implant Dent Relat Res. 2000;2(3):120-128.
  • [27] Li T, Kong L, Wang Y, et al. Selection of optimal dental implant diameter and length in type IV bone: A three-dimensional finite element analysis. Int J Oral Maxillofac Surg. 2009;38(10):1077-1083.
  • [28] Woodmansey KF, Ayik M, Buschang PH, et al. Differences in masticatory function in patients with endodontically treated teeth and single-implant-supported prostheses: A pilot study. J Endod 2009;35(1):10-14.
  • [29] Huang HL, Hsu JT, Fuh LJ, et al. Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Comput Biol Med. 2010;40(5):525-532.
  • [30] Mosavar A, Ziaei A, Kadkhodaei M. The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: A Finite Element Analysis. Int J Oral Maxillofac Implants. 2015;30(6):1317-1326
  • [31] Froum SJ, Simon H, Cho SC, et al. Histologic evaluation of bone-implant contact of immediately loaded transitional implants after 6 to 27 months. Int J Oral Maxillofac Implants. 2005;20(1):54-60.
  • [32] Coelho PG, Marin C, Granato R, et al. Clinical device-related article histomorphologic analysis of 30 plateau root form implants retrieved after 8 to 13 years in function. A human retrieval study. J Biomed Mater Res B Appl Biomater. 2009;91(2):975-979.
  • [33] Hansson S, Werke M. The implant thread as a retention element in cortical bone: The effect of thread size and thread profile: A finite element study. J Biomech 2003; 36:1247–1258.
  • [34] Misch CE, Strong T, Bidez MW. Scientific rationale for dental implant design. In: Misch CE (ed). Contemporary Implant Dentistry, ed 3. St Louis: Mosby, 2008:200-229.
  • [35] Fuh LJ, Hsu JT, Huang HL, et al. Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental Implants with bone: Three-Dimensional Numeric Analysis Int.J Oral Maxillofac Implants 2013;28(2):e64–e71.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89048709-4554-440c-8cf8-a9c8215a3323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.