PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rozwój modeli matematycznych opisujących emisję N2O z procesów biologicznego oczyszczania ścieków

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
The development of mathematical models describing emission of N2O from biological wastewater treatment
Języki publikacji
PL
Abstrakty
PL
Procesy biologicznego oczyszczania ścieków są źródłem znacznych ilości gazów cieplarnianych emitowanych do atmosfery. Pośród nich szczególną rolę odgrywa tlenek azotu (I) (N2O),który charakteryzuje się wysoką wartością współczynnika potencjału cieplarnianego równą 298. Dokładna wielkość emisjiN2O z procesów biologicznego oczyszczania ścieków jest trudna do określenia. Podczas biologicznego oczyszczania ściekówN2O jest wytwarzany w procesach nitryfikacji oraz autotroficznej i heterotroficznej denitryfikacji azotu zawartego w ściekach dopływających do reaktora biologicznego, a wielkość jego produkcji jest uzależniona od wartości kilku parametrów eksploatacyjnych. Od początku lat dziewięćdziesiątych podejmowane są próby opisu matematycznego procesów prowadzących do powstawania N2O w osadzie czynnym. Doprowadziło to do opracowania szeregu modeli matematycznych, które w różnym zakresie uwzględniają te procesy oraz czynniki na nie wpływające. W artykule przedstawiono rozwój najważniejszych modeli matematycznych opisujących emisję N2O z procesów biologicznego oczyszczania ścieków. Przedstawiono ich cechy charakterystyczne, zdolność do określenia całkowitej wielkości emisji N2O oraz istniejące ograniczenia ich stosowania.
EN
Processes of biological wastewater treatment produce significant amount of greenhouse gases (GHG) that usually are emitted directly to atmosphere. Among them nitrous oxide (N2O) plays an important role as it has a high value of GHG potential equal to 298. The exact magnitude of N2O emission from wastewater treatment is difficult to estimate. During biological wastewater treatment N2O is produced as a mid-product of nitrification, and autotrophic and heterotrophic denitrification of nitrogen present in influent. The intensity of its production depends on several operational parameters. Since early 1990s the attempts to develop a mathematical description of the processes that lead to N2O production in activated sludge processes have been undertaken. It resulted in elaboration of several mathematical models that vary in the scope of processes they include and the parameters they consider. The article present the development of mathematical models describing N2O emission from biological wastewater treatment. Discussed are their characteristic features and the capability to estimate total N2O emission, as well as their short comings and limitations.
Rocznik
Tom
Strony
398--402
Opis fizyczny
Bibliogr. 35 poz.
Twórcy
autor
  • Politechnika Krakowska im. Tadeusza Kościuszki, Instytut Zaopatrzenia w Wodę i Ochrony Środowiska, ul. Warszawska 24, 31-155 Kraków
Bibliografia
  • [1] Bani Shahabadi, M., Yerushalmi, L. i Haghighat, F. (2009). Impact of process design on greenhouse gas (GHG) generation by wastewater treatment plant. Water Res., (43), str. 2679–2687.
  • [2] Batstone, D., Keller, J., Angelidaki, I., Kalyuzhnyi, S., Pavlostathis, S., Rozzi, A. i inni. (2002). The IWA Anaerobic Digestion Model No 1 (ADM1). Wat Sci Technol., 45(10), str. 65–73.
  • [3] Bock, E., Schmidt, I., Steven, R. i Zarf, D. (1995). Nitrogen loss caused by nitrifying Nitrosomonas cells using ammonia or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology, (163), str. 16–20.
  • [4] Bridle, T., Shaw, A., Cooper, S., Yap, K., Third, K. i Domurad, M. (2008). Estimation of greenhouse gas emissions from wastewater treatment plants. Proceedings of IWA World Water Congress, Vienna, Austria, September 7–12, 2008. Vienna: IWA.
  • [5] Colliver, B. i Stephenson, T. (2000). Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances, 18(3), str. 219–232.
  • [6] Copp, J. (. (2002). The COST Simulation Benchmark – Description and Simulator Manual. Luxembourg: Office for Official Publications of the European Communities.
  • [7] Corominas, L., Flores-Alsina, X., Snip, L. i Vanrolleghem, P. (2012). Comparison of Different Modeling Approaches to Better Evaluate Greenhouse Gas Emissions From Whole Wastewater Treatment Plants. Biotechnol Bioengin., 109(11), str. 2855–2863.
  • [8] Flores-Alsina, X., Arnell, M., Amerlinck, Y., Corominas, L., Gernaey, K., Guo, L., et al. (2012). A dynamic modelling approach to evaluate GHG emissions from wastewater treatment plants. World Congress on Water, Climate and Energy 13/05/2012-18/05/2012. Dublin, Ireland: International Water Association.
  • [9] Foley, J., de Haas, D., Yuan, Z. i Lant, P. (2010). Nitrous oxide generation in full-scale biological nutrient removal wastewater treatment plants. Wat Res, (44), str. 831–844.
  • [10] Guo, L. i Vanrolleghem, P. (2014). Calibration and validation of an activated sludge model for greenhouse gases no. 1 (ASMG1): prediction of temperature-dependent N2O emission dynamics. Bioprocess Biosyst Eng,, 37(2), str. 151–163.
  • [11] Hanaki, K., Zheng, H. i Matsuo, T. (1992). Production of nitrous oxide gas during denitrification of wastewater. Wat Sci Technol., 26(526), str. 1027–1036.
  • [12] Henze, M., Gujer, W., Mino, T. i van Loosdrecht, M. (2000). Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. London, UK: IWA Publishing.
  • [13] Hiatt, W. i Grady, C. (2008). An updated process model for carbon oxidation, nitrification, and denitrification. Water Environ Res, (80), str. 2145–2156.
  • [14] IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change.
  • [15] Jeppsson, U., Pons, M.-N., Nopens, I., Alex, J., Copp, J., Gernaey, K. i inni. (2007). Benchmark Simulation Model No 2 – General Protocol and Exploratory Case Studies. Water Sci Technol., 56(8), str. 67-78.
  • [16] Jeppsson, U., Pons, M.-N., Nopens, I., Alex, J., Copp, J., Gernaey, K. V. i inni. (2007). Benchmark simulation model no 2-general protocol and exploratory case studies. Water Sci Technol., 56(8), str. 67-78.
  • [17] Kampschreur, M., Tan, N., Kleerebezem, R., Picioreanu, C. i Jetten, M. v. (2008). Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environ Sci Technol., (42), str. 429–435.
  • [18] Kampschreur, M., Temmink, H., Kleerebezem, R., Jetten, M. i van Loosdrecht, M. (2009). Nitrous oxide emission during wastewater treatment. Water Res., (43), str. 4093–4103.
  • [19] Law, Y., Ni, B., Lant, P. i Yuan, Z. (2012). N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate. Water Res., (46), str. 3409–3419.
  • [20] LGO. (2008). Local Government Operations Protocol For the quantification and reporting of greenhouse gas emissions inventories. Version 1.0.
  • [21] Lu, H. i Chandran, K. (2010). Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as. Biotechnol Bioeng, 106(3), str. 390–398.
  • [22] Mampaey, K., Beuckels, B., Kampschreur, M., Kleerebezem, R., van Loosdrecht, M. i Volcke, E. (2013). Modelling nitrous and nitric oxide emissions by autotrophic ammonia-oxidizing bacteria. Environmental Technology, 34(12), str. 1555–1566.
  • [23] Metcalf & Eddy. (2004). Wastewater Engineering: Treatment and Reuse. Singapore: Mc Graw Hill.
  • [24] Mikosz, J. (2014) Determination of permissible industrial pollution load at a municipal wastewater treatment plant. Intern J Environ Science & Technol., 12(3), str. 827–836.
  • [25] Monteith, H., Sahely, H., MacLean, H. i Bagley, D. (2005). A rational procedure for estimation of greenhouse-gas emissions from municipal wastewater treatment plants. Water Environ Res., (77), str. 390–403.
  • [26] NGER. (2008). National Greenhouse and Energy Reporting (Measurement) Technical Guidelines 2008 v1.1. Australian Government, Department of Climate Change.
  • [27] Ni, B., Ruscalleda, M., Pellicer-Nàcherr, C. i B.F., S. (2011). Modelling Nitrous Oxide Production during Biological Nitrogen Removal via Nitrification and Denitrification: Extensions to the General ASM Models. Environ Sci Technol., (45), str. 7768–7776.
  • [28] Ni, B., Yuan, Z., Chandran, K., Vanrolleghem, P. i Murthy, S. (2013). Evaluating Four Mathematical Models for Nitrous Oxide Production by Autotrophic Ammonia-Oxidizing Bacteria. Biotechnol Bioeng, ,110(1), str. 153–163.
  • [29] Snip, L. (2009). Quantifying the greenhouse gas emissions of wastewater treatment plants. Wageningen University.
  • [30] Snip, L., Boiocchi, R., Flores-Alsina, X., Jeppsson, U. i Gernaey, K. (2014). Challenges encountered when expanding activated sludge models: a case study based on N2O production. Wat Sci Technol,, 70(7), str. 1251–1260.
  • [31] Snowling, S., Montieth, H., Schraa, O. i Andres, H. (2006). Modeling greenhouse gas emissions from activated sludge systems. WEFTEC, str. 7206–7212, WEF.
  • [32] Tallec, G., Garnier, J., Billen, G. i Gousailles, M. (2006). Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: Effect of oxygenation level. Water Res., (40), str. 2972–2980.
  • [33] Von Schulthess, R. i Gujer, W. (1996). Release of nitrous oxide (N2O) from denitrifying activated sludge: verification and application of a mathematical model. Wat Res., (30), str. 521–530.
  • [34] Wrage, N., Velthofb, G., van Beusichema, M. i Oenema, O. (2001). Role of nitrifier denitrification in the production of nitrous oxide. Soil Biology & Biochemistry, 33(12–13), str. 1723–1732.
  • [35] Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L. i Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Res., 46(4), str. 1027–1037.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8903be43-292d-4ad6-be25-b8dc0910c82c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.