PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Unitary energy in the black radish cutting process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the methodology and results of measurement of the unitary energy in cutting black radish. The values of the unitary energy of cutting the root parenchyma of black radish sampled in several areas were analysed. To compare the values of the unitary cutting energy related to the differences in the structure of the black radish root, the samples were cut at the longitudinal and transverse orientation of the fibres relative to the movement of the working tool. The cutting process was carried out using knives with a sharpening angle of 5°, 10°, and 15° and cutting velocity values of 100 mm·s-1, 200 mm·s-1, 300 mm·s-1, and 400 mm·s-1. The results obtained were subjected to mathematical analysis in Statistica 8.0 software. The statistical analysis showed a significant correlation between the value of the unitary energy and sampling site, the knife sharpening angle and the velocity of knife movement. The highest value of the unitary cutting energy was obtained at a sharpening angle of β=15° and the lowest value was observed when the knife with the β=5° sharpening angle was used. The unitary cutting energy decreased with the increase in the knife movement velocity.
Twórcy
autor
  • Department of Biological Bases of Food and Feed Technologies, University of Life Sciences Głęboka 28, 20-612 Lublin
autor
  • Department of Engineering and Food Machinery, University of Life Sciences, Doświadczalna 44, 20-280 Lublin
Bibliografia
  • 1. Alarcón-Flores M.I., Romero-González R., Vidal J.L.M., Frenich A.G. 2015. Systematic Study of the Content of Phytochemicals in Fresh and Fresh-Cut Vegetables. Antioxidants, 4(2), 345-358.
  • 2. Alarcón-Flores M.I., Romero-González R., Vidal J.L.M., González F.J.E., Frenich A.G. 2014. Monitoring of phytochemicals in fresh and fresh-cut vegetables: A comparison. Food Chemistry, 142, 392-399.
  • 3. Amodio M.L., Derossi A., Colelli G. 2014. Modeling phenolic content during storage of cut fruit and vegetables: A consecutive reaction mechanism. Journal of Food Engineering, 140, 1-8.
  • 4. Bhushan R.K. 2013. Optimization of cutting parameters for minimizing power consumption and maximizing tool life during machining of Al alloy SiC particle composites. Journal of Cleaner Production, 39, 242-254.
  • 5. Bohdziewicz J., Czachor G. 2010. The impact of load on deformation progress for ball-shaped vegetables. Agricultural Engineering, 1(119), 85-91.
  • 6. Brecht J.K., Saltveit M.E., Talcott S.T., Schneider K.R., Felkey K., Bartz J.A. 2004. Fresh-cut vegetables and fruits. Horticultural Reviews, 30(30), 185-251.
  • 7. Carlsson-Kanyama A., Faist M. 2000. Energy use in the food sector: a data survey. Swedish Environmental Protection Agency, Stockholm, Sweden.
  • 8. Derossi A., De Pilli T., La Penna M.P., Severini C. 2011. pH reduction and vegetable tissue structure changes of zucchini slices during pulsed vacuum acidification. LWT-Food Science and Technology, 44(9), 1901-1907.
  • 9. Francisco M., Velasco P., Moreno D.A., García-Viguera C., Cartea M.E. 2010. Cooking methods of Brassica rapa affect the preservation of glucosinolates, phenolics and vitamin C. Food Research International, 43(5), 1455-1463.
  • 10. Hajizadeh H.S., Kazemi M. 2012.Investigation of Approaches to Preserve Postharvest Quality and Safety in Fresh-cut Fruits and Vegetables. Research Journal of Environmental Sciences, 6(3), 93.
  • 11. Kai L., Yanli Y., Kai L., Qi C., Lüxiang Z., Song G. 2012. Experimental study on rootstock cutting mechanism of pipeline grafting machine for solanaceae. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 28(16), 23-28.
  • 12. Kowalik K., Sykut B., Marczak H., Opielak M. 2013.A method of evaluating energy consumption of the cutting process based on the example of hard cheese. Maintenance and Reliability, 15(3), 241–244.
  • 13. Kubík Ľ. 2012. Evaluation of the vegetable tissue geometrical structure. Journal on Processing and Energy in Agriculture, 16(2), 61-66.
  • 14. Kusińska E., Starek A. 2014. Assessment of variability of the maximum cutting force in relation to the beetroot pulp structure. Agricultural Engineering, 1(149), 91-100.
  • 15. Lee J.G., Bonnema G., Zhang N., Kwak J.H., de Vos R.C., Beekwilder J. 2013. Evaluation of glucosinolate variation in a collection of turnip (Brassica rapa) germplasm by the analysis of intact and desulfoglucosinolates. Journal of Agricultural and Food Chemistry, 61(16), 3984-3993.
  • 16. Leong S.Y., Richter L.K., Knorr D., Oey I. 2014. Feasibility of using pulsed electric field processing to inactivate enzymes and reduce the cutting force of carrot (Daucuscarota var. Nantes). Innovative Food Science and Emerging Technologies, 26, 159-167.
  • 17. Masanet E. 2008. Energy efficiency improvement and cost saving opportunities for the fruit and vegetable processing industry. An Energy Star Guide for Energy and Plant Managers, Lawrence Berkeley National Laboratory.
  • 18. Mishra B.B., Gautam S., Sharma A. 2012. Browning of fresh-cut eggplant: Impact of cutting and storage. Postharvest Biology and Technology, 67, 44-51.
  • 19. Nadulski R., Zawiślak K., Panasiewicz M., Skwarcz J., Starek A. 2013.Characteristics of cutting resistance of selected plant materials of different morphological. Chemical Engineering and Equipment, 52(3), 208-209.
  • 20. Opielak M., Komsta H. 2000. Directions of development the grinding equipment for the food industry. Zeszyty Naukowe Politechniki Opolskiej, 61, 167-173.
  • 21. Opielak M., Sykut B., Kowalik K., Krzyżak A. 2006. Stanowisko do badania oporów cięcia. Wydział Mechaniczny, Politechnika Lubelska, Lublin.
  • 22. Ramos B., Miller F.A., Brandão T.R., Teixeira P., Silva C.L. 2013. Fresh fruits and vegetables—an overview on applied methodologies to improve its quality and safety. Innovative Food Science and Emerging Technologies, 20, 1-15.
  • 23. Ricci I., Amodio M.L., Colelli G. 2013. Influence of pre-cutting operations on quality of fresh-cut artichokes (Cynarascolymus L.): Effect of storage time and temperature before cutting. Postharvest Biology and Technology, 85, 124-131.
  • 24. Shirmohammadi M., Yarlagadda P.K.D.V., Kosse V., Gu Y. 2014. Study of Mechanical Deformations on Tough Skinned Vegetables during mechanical Peeling Process (A Review). GSTF Journal of Engineering Technology (JET), 1(1).
  • 25. Ślaska-Grzywna B. 2008. The impact of celery heat treatment parameters on cutting force. Agricultural Engineering, 6, 175-180.
  • 26. Velchev S., Kolev I., Ivanov K., Gechevski S. 2014. Empirical models for specific energy consumption and optimization of cutting parameters for minimizing energy consumption during turning. Journal of Cleaner Production, 80, 139-149.
  • 27. Velderrain-Rodríguez G.R., Quirós-Sauceda A.E., Aguilar G.G., Siddiqui M.W., Zavala J.A. 2015. Technologies in Fresh-Cut Fruit and Vegetables. In Minimally Processed Foods. Springer International Publishing, 79-103.
  • 28. Xia Q., Wu W.C., Tian K., Jia Y.Y., Wu X., Guan Z., Tian X.J. 2015. Effects of different cutting traits on bud emergence and early growth of the Chinese vegetable Toonasinensis. ScientiaHorticulturae, 190, 137-143.
  • 29. Yan J., Li L. 2013. Multi-objective optimization of milling parameters–the trade-offs between energy, production rate and cutting quality. Journal of Cleaner Production, 52, 462-471.
  • 30. Zastempowski M., Bochat A. 2011. The study of energy consumption cut plant material. Chemical Engineering and Equipment, 50(3), 91-92.
  • 31. Zheng Y.N., Hu W.Z., Jiang A.L., Bi Y. 2012. Research progress in response of mechanical wounding and regulation for fresh-cut fruits and vegetables. Science and Technology of Food Industry, 15, 088.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-89013b81-571e-4a96-81a4-1fc00687d346
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.