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Summary.The article presents the methodology and 

results of measurement of the unitary energy in cutting 

black radish. The values of the unitary energy of cutting 

the root parenchyma of black radish sampled in several 

areas were analysed. To compare the values of the 

unitary cutting energy related to the differences in the 

structure of the black radish root, the samples were cut at 

the longitudinal and transverse orientation of the fibres 

relative to the movement of the working tool. The 

cutting process was carried out using knives with a 

sharpening angle of 5°, 10°, and 15° and cutting velocity 

values of 100 mm·s
-1

, 200 mm·s
-1

, 300 mm·s
-1

, and 400 

mm·s
-1

. The results obtained were subjected to 

mathematical analysis in Statistica 8.0 software. The 

statistical analysis showed a significant correlation 

between the value of the unitary energy and sampling 

site, the knife sharpening angle and the velocity of knife 

movement. The highest value of the unitary cutting 

energy was obtained at a sharpening angle of β=15° and 

the lowest value was observed when the knife with the 

β=5° sharpening angle was used. The unitary cutting 

energy decreased with the increase in the knife 

movement velocity. 

Key words: unitary cutting energy, knife sharpening 

angle, cutting velocity. 

 

 

INTRODUCTION 

 

The cutting process is one of the basic methods for 

fragmentation of materials in the food industry. Cutting 

vegetables is often a precise operation, in particular when 

cubes, strips, or slices of the products must be obtained. 

Achievement of the required shapes is only possible with 

the use of non-worn devices and appropriately selected 

cutting parameters [12, 16, 17]. 

The cutting process is determined by many factors, 

including the structure of the material and the structure of 

the cutting tool [1, 6, 7, 13, 18, 27]. A knife is an element 

operating directly on the plant, and its parameters 

determine the energy required for cutting the plant 

material and the magnitude of the working resistance of 

the machine. Cutting knives act like sharp wedges 

pushing into the structure of the cut material. Differently-

shaped knives are used for cutting vegetables. The most 

frequently used knives include flat knives with a comb-

shaped blade, knives with a spade-shaped blade and flat 

knives with a straight continuous blade [11, 12, 20, 28].  

Based on the results of investigations on cutting carrots, 

celery, potatoes, etc. conducted so far, it can be assumed 

that the knife cutting angle has the greatest impact on the 

process of cutting. Additionally, the knife movement 

velocity has a significant effect on the cutting resistance. 

Cutting energy values are also influenced by biological 

factors, storage conditions and the internal structure of the 

material [2, 3, 8, 22, 23, 25, 30].  

It should be noted, however, that high cutting 

efficiency cannot be achieved when the cutting 

parameters are inappropriately selected and the working 

elements are excessively worn. Too low cutting velocity 

may lead to rapid wear of the knives, whereas excessive 

cutting velocity leads to the formation of a large cutting 

bevel or even incomplete cutting of the material. 

Minimisation of the knife sharpening angle reduces 

energy loss. Optimisation of the cutting process can 

improve the quality of the raw material and reduce the 

consumption of required energy [4, 10, 24, 29, 31].  

Recently, the consumption of black radish in Poland 

has increased due to its taste and nutritional values. The 

vegetable contains a variety of vitamins, proteins, sugars, 

and minerals. Its root has a complex structure, which may 

cause difficulties in the cutting process. Therefore, it is 

essential to select the appropriate structure and working 

parameters of the cutting device in order to improve 

cutting performance [5, 9, 14, 15, 19, 26]. Despite the 

increased interest in black radish, there are no research 

results in Polish and international literature concerning 

cutting this vegetable. Hence, the black radish was chosen 

as the model raw material in these investigations. 
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The aim of the study was to evaluate the impact of the 

technical parameters of the cutting process, i.e. the cutting 

angle and knife velocity per unitary energy for samples 

collected from various fragments of the black radish 

differing in the structure and cut at the longitudinal and 

transverse orientation of the fibres relative to the 

movement of the working tool. 

 

 

MATERIALS AND METHODS 

 

The raw material used for the investigations was the 

Murzynka variety of black radish. The research material 

was collected between postharvest day 2 and 7. The 

vegetables were stored in a ventilated room at the 

temperature of 4
o
C and 95% relative air humidity. The 

shape of the black radish roots was nearly round. Their 

diameter was 8±0,5 cm. Roots of this size were selected 

by a roller sorter. 

Parenchyma tissues were excised along axis y from 

the upper (wg), middle (ws), and lower (wd) layers, since 

sampling the core required the highest unitary energy. 

This had been indicated by earlier laboratory analyses.  

The structure of the black radish is heterogeneous. The 

highest and lowest density of fibres is noted in the upper 

and middle layers, respectively.  

The site of excision of the root material samples is 

shown schematically in Fig. 1. 

 
Fig. 1. Site of material sampling  

 

A cuboid with the height of 45 mm and 15 mm side of 

the base was excised along axis y (core) from the root and 

divided into three cubes with 15 mm side. The apical part 

and the rootlet were discarded. The material prepared in 

this way was cut longitudinally and transversely to the 

parenchyma fibres relative to the cutting plane.  

In the investigations, we used straight NC6 steel 

knives (1,5 mm thick, 27 mm long, and 70 mm wide) 

with the sharpening angle of 5°, 10°, and 15°. The knife 

cutting velocity was 100, 200, 300, and 400 mm·s
-1

. The 

angle between the cutting edge and the cutting direction 

was 90°. The value of the relief angle was 0°.  

The investigations were performed in ten replicates 

(for the longitudinal and transverse arrangement of the 

fibres, each knife sharpening angle, and each velocity 

value). 

The measurements were carried out on the workbench 

for analyses of cutting resistance developed at the Faculty 

of Mechanical Engineering, Institute of Transport, 

Internal Combustion Engines and Ecology, Lublin 

University of Technology [21]. One of the most important 

distinguishing features was the possibility of recording 

the forces operating simultaneously in two perpendicular 

directions: parallel and perpendicular to the direction of 

the main movement. The scheme of the workbench is 

presented in Fig. 2. 

 
Fig. 2. Workbench scheme: 1 - steel beam, 2 - holder, 3 - 

cut sample, 4, 5, 6 - columns, 7 - band, 8 - measurement 

plate, 9 - inductive sensor, 10 - knife control plate, 11 - 

column, 12 - inductive sensor, 13 - column, 14 - bed, 15 - 

ball, 16 - column, 17 - hanger, 18 - knife control plate, 19 

- knife, 20 - column  

 

The working system of the workbench consisted of a 

horizontal bed (14) with a steel beam (1), which moved 

longitudinally and was driven by a hydraulic cylinder 

with a sample holder (2). A knife (19) with a rotational 

control plate (18) was mounted with a hanger (17) on a 

rectangular plate (8). The plate (8) with a rotational 

control (10) moved on balls (15) located on the upper 

ends of the vertical columns (4, 5, 16, and 20). A band (7) 
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with inductive sensors (9, 12) measuring forces in two 

mutually perpendicular directions was fastened to 

columns 6, 11, and 13. The information from the sensors 

was transferred by electronic meters and the measurement 

card to the computer equipped with the program “Pomiar” 

[Measurement]. The program was devised to support the 

measurement card and it facilitated the reception and 

processing of signals as well as data visualisation and 

archiving. 

The workbench facilitated the changing of the cutting 

tool; hence, it was possible to assess the impact of the tool 

geometry, e.g. the knife sharpening angle. 

Another important trait of the workbench was the 

possibility of applying velocities (from 50 to 450 mm·s
-1

) 

higher than those obtained by the Intron strength device, 

which is used most frequently by researchers in this 

discipline. 

Based on the data provided by the measurement 

system (recorded cutting force), it was possible to 

determine the cutting work value and calculate the unitary 

energy of cutting from equation 1, which is defined as 

work required for cutting a unit area of the material: 

 

 
A

L
Ej   (1) 

 

where:  

Ej – unitary energy of cutting [J·m
-2

],L – cutting work 

[J],A – sample surface area [m
2
]. 

 

The results obtained were analysed statistically with 

the package Statistica 8.0. Multivariate analysis of 

variance ANOVA was performed to determine the 

significance of the differences between the sampling site 

and cutting velocity and the unitary energy of cutting. 

Inference was made at the significance level of 0,05. 

Detailed analyses of the mean confidence intervals were 

carried out with Tukey’s test. Regression analysis was 

employed to derive equations for the unitary energy of 

cutting relative to the knife sharpening angle and cutting 

velocity. 

 

 

RESULTS AND DISCUSSION 

 

Figures 3-5 show graphs of the mean values of the 

unitary energy of cutting for black radish samples 

collected from the specified layers and cut longitudinally 

and transversely relative to the fibres with knives 

characterised by sharpening angles from 5° to 15°. The 

different letters at the mean values in the graphs indicate 

significant differences between them. 

The value of the unitary energy of cutting at the knife 

sharpening angle of β=5° (at cutting velocity of 100 

mm·s
-1

) was 292,855 J·m
-2

 for the upper layer sample, 

271,813 J·m
-2

 for the middle layer sample, and 285,388 

J·m
-2

 for the sample collected from the lower layer. In 

comparison with the results obtained at the longitudinal 

orientation of fibres, the transversely cut samples were 

characterised by higher values, i.e. 299,613 J·m
-2

, 

284,482 J·m
-2

, and 296,222 J·m
-2

, respectively. The 

results also indicated that the increase in the cutting 

velocity was accompanied by lower values of the unitary 

energy of cutting for each of the sampling sites and 

orientation. The lowest cutting energy value at the 

velocity of 400 mm·s
-1

 was used to cut the parenchyma 

from the lower layer at the longitudinal orientation of the 

fibres (123,273 J·m
-2

). As shown by Tukey’s test of 

differences significance, there were statistically 

significant differences between the unitary energy of 

cutting for the black radish samples at the longitudinal 

and transverse orientation of fibres. 
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Fig. 3. The relationship between the unitary energy of 

cutting with the knife at the sharpening angle of β=5
o 

and 

the cutting velocity and sampling site at the longitudinal 

and transverse orientation of fibres 

 

Figure 4 presents the mean values of the unitary 

energy of cutting obtained at the sharpening angle of 

β=10
o
 and the velocity from 100 to 400 mm·s

-1
. The 

highest value (252,896 J·m
-2

) of the unitary energy of 

cutting in this case was noted for the sample collected 

from the middle part of black radish parenchyma oriented 

transversely to the fibres and cut at the velocity of 100 

mm·s
-1

. The lowest cutting energy at the velocity of 400 

mm·s
-1

 was required in the longitudinal sample collected 

from the lower part of the analysed root; its value was 

119,898 J·m
-2

. The mean values of the unitary energy of 

cutting relative to the longitudinal and transverse 

orientation of the samples in homogeneous groups 

(p≤0,05) indicate that (in the majority of cases) the values 

of the parameter differ significantly. This is associated 
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with the varied structure of the raw material. In the 

longitudinal section of the black radish, the highest 

density of fibres was noted in the upper layer, whereas the 

middle layer exhibited the lowest density. 
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Fig. 4. The relationship between the unitary energy of 

cutting with the knife at the sharpening angle of β=10
o 

and the cutting velocity and sampling site at the 

longitudinal and transverse orientation of fibres 

 

The experimental results of cutting the black radish 

root parenchyma with the knife with the sharpening angle 

of β=15° (in the range of the velocities applied) indicate 

that the mean values of the unitary energy of cutting were 

in the range from 144,257 to 426,352 J·m
-2

 for samples 

with the longitudinal orientation of fibres and from 

149,125 to 442,146 J·m
-2

 for samples with the transverse 

orientation of fibres (Fig. 5). The highest value of the 

unitary energy of cutting at the velocity of 100, 200, and 

300 mm·s
-1

 in the black radish samples with 

longitudinally and transversely arranged fibres was noted 

for the upper layer samples. An exception was the process 

of sample cutting at the velocity of 400 mm·s
-1

, where the 

highest values of unitary energy were obtained for the 

lower layer. The results of calculations demonstrate that 

the values of the parameters differed significantly in most 

cases. 

The analysis of the results presented in Figures 6 and 

7 revealed that, regardless of the orientation of the black 

radish fibres (longitudinal or transverse), the lowest 

values of unitary energy of cutting were obtained in the 

case of the knife with the sharpening angle of 5
o
, while 

the highest value was found for the sharpening angle of 

15
o
. An increase in the cutting velocity caused a decrease 

in the unitary energy of the process.  
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Fig. 5. The relationship between the unitary energy of 

cutting with the knife at the sharpening angle of β=15o 

and the cutting velocity and sampling site at the 

longitudinal and transverse orientation of fibres 

 

 
 

Fig. 6. The impact of the cutting velocity and knife 

sharpening angle on the unitary energy of cutting black 

radish parenchyma at the longitudinal orientation of fibres 

 

The impacts of the knife sharpening angle β, distance 

from axis y and the cutting velocity v on the value of the 

unitary energy of cutting Ej for the black radish samples 

were described with multiple regression equations. 

The relationship for the black radish samples 

arranged longitudinally can be described with the 

equation: 
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𝐸𝑗 = 0,047𝑦2 + 0,002𝑣2 + 1,99𝛽2 − 1,574𝑣 −

35,18𝛽 + 548,253  (1) 

 

 R
2
 = 0,816; ≤0,05  

 

The changes in the unitary energy of cutting black 

radish samples with transverse arrangement of fibres can 

be defined as:  

𝐸𝑗 = 0,05𝑦2 + 0,002𝑣2 + 1,964𝛽2 − 1,63𝑣 −

35,033𝛽 + 568,283  (2) 

 

R
2
 = 0,831; ≤0,05 

 

 
Fig. 7. The impact of the cutting velocity and knife 

sharpening angle on the unitary energy of cutting black 

radish parenchyma at the transverse orientation of fibres 

 

The results indicated a significant effect of the knife 

sharpening angle and cutting velocity on the unitary 

energy of cutting. The high determination coefficients 

indicated a good fit of the equations with the results 

obtained. 

 

 

CONCLUSIONS 

 

1. The experimental analyses of the working 

characteristics of the unitary energy of cutting have 

validated the usefulness of the proposed research 

method for investigation of problems related to cutting 

materials with a varied internal structure. 

2. In the experimental conditions, an effect of the 

anisotropy of the material and fibre orientation on the 

values of the unitary energy of cutting was observed. 

The unitary energy of cutting was lower at the 

transverse orientation of the fibres. 

3. The cutting velocity in the range from 100 mm·s
-1

to 

400 mm·s
-1 

had a significant impact on the unitary 

energy of cutting of the black radish samples. An 

increase in the knife cutting velocity was accompanied 

by a decrease in the unitary energy of cutting.  

4. The appropriate selection of the geometry of the 

cutting tool contributed to the reduction of the cutting 

energy. The highest value of the unitary energy of 

cutting was obtained at the knife sharpening angle of 

β=15° and the lowest value was observed at the 

sharpening angle of β=5°. 

5. Further investigations of cutting plant materials with 

various cutting tools and at their different parameters 

are advisable.  
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