PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biorefineries – factories of the future

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Efforts were made to demonstrate that in biorefineries it is possible to manufacture all the commodities required for maintaining human civilisation on the current level. Biorefineries are based on processing biomass resulting from photosynthesis. From sugars, oils and proteins, a variety of food, feed, nutrients, pharmaceuticals, polymers, chemicals and fuels can further be produced. Production in biorefineries must be based on a few rules to fulfil sustainable development: all raw materials are derived from biomass, all products are biodegradable and production methods are in accordance with the principles of Green Chemistry and Clean Technology. The paper presents a summary of state-of-the-art concerning biorefineries, production methods and product range of leading companies in the world that are already implemented. Potential risks caused by the development of biorefineries, such as: insecurities of food and feed production, uncontrolled changes in global production profiles, monocultures, eutrophication, etc., were also highlighted in this paper. It was stressed that the sustainable development is not only an alternative point of view but is our condition to survive.
Rocznik
Strony
109--119
Opis fizyczny
Bibliogr. 44 poz., il.
Twórcy
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
  • Warsaw University of Technology, Faculty of Chemical and Process Engineering, Waryńskiego 1, 00-645 Warsaw, Poland
Bibliografia
  • 1. Aresta M., Dibenedetto A., Dumeignil F., 2012. Biorefinery: From Biomass to Chemicals and Fuels. DeGruyter. Biopol, 2009. Final report EU-FP6-project, Deliverable D7.6. Available at: www.biorefinery.nl/fileadmin/biopol/user/documents/PublicDeliverables/BIOPOL_D_7_6_-_Final_240609.pdf.
  • 2. Borowitzka M.A., 1986. Micro-algae as sources of fine chemicals. Microbiol Sci., 3, 372-375.
  • 3. Borowitzka M.A., 1999. Commercial production of microalgae: Ponds, tanks, tubes and fermenters. J. Biotechnol., 70, 313-321. DOI: 10.1016/S0079-6352(99)80123-4.
  • 4. Chua H., Yu P.H., Ma C.K., 1999. Accumulation of biopolymers in activated sludge biomass. Appl. Biochem. Biotechnol., 78, 389-399. DOI: 10.1007/978-1-4612-1604-9_36.
  • 5. Cuaresma M., Janssen M., Vílchez C., Wijffels R.H., 2011. Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresour. Technol., 102, 5129-5137. DOI: 10.1016/j.biortech.2011.01.078.
  • 6. Daicel Polymer Ltd., 2012. A new cellulose bioplastics “CELBLEN EC” based on non-edible wood resources. Available at: www.daicelpolymer.com/en/news/2012/121129.html.
  • 7. Doi Y., Steinbuchel A., 2002. Biopolymers. Vol 3a. Polyesters I: Biological systems and biotechnological production. Wiley-VCH, Weinheim, Germany.
  • 8. Frost & Sullivan, 2007. The Impact of green trends in the European Oleochemicals market. Available at: www.frost.com/prod/servlet/market-insight-top.pag?docid=102601717.
  • 9. Ge H., Hu Y., Yang S., Jiang X., Yang C., 2000. Preparation, characterization, and drug release behaviors of drug-loaded e-Caprolactone/L-Lactide copolymer nanoparticles. J. Appl. Polym. Sci., 75, 874-882. DOI: 10.1002/(SICI)1097-4628(20000214)75:7<874::AID-APP3>3.0.CO;2-G.
  • 10. Georgianna D.R., Mayfield S.P., 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488, 329-335. DOI: 10.1038/nature11479.
  • 11. Ghirardi M..L., Zhang L., Lee J.W., Flynn T., Seibert M., Greenbaum E., Melis A., 2000. Microalgae: A green source of renewable H2. Trends Biotech., 18, 506-511. DOI:10.1016/S0167-7799(00)01511-0.
  • 12. Greenwell H.C., Laurens L.M., Shields R.J., Lovitt R.W., Flynn K.J., 2009. Placing microalgae on the biofuels priority list: A review of the technological challenges. J. Roy. Soc. Interface, 7 (46), 703-726. DOI: 10.1098/rsif.2009.0322.
  • 13. Griffiths T.W., 2010. Cosmeceuticals: Coming of age. Br. J. Dermatol., 162, 469-470. DOI: 10.1111/j.1365-2133.2010.09634.x.
  • 14. Gruber P.R., Hall E.S., Kolstad J.J, Iwen M.L., Benson R.D., Borchardt R.L., 1993. Continuous process for manufacture of lactide polymers with controlled optical purity. U.S. Patent 5,247,058.
  • 15. Hallenbeck P.C., Benemann J., 2002. Biological hydrogen production: fundamentals and limiting processes. Intl. J. Hydrogen Energ., 27, 1185-1193. DOI: 10.1016/S0360-3199(02)00131-3.
  • 16. Hemschemeier A., Melis A., Happe T., 2009. Analytical approaches to photobiological hydrogen production in unicellular green algae. Photosynth Res., 102, 523-540. DOI: 10.1007/s11120-009-9415-5.
  • 17. Holmgren K., Henning D., 2004. Comparison between material and energy recovery of municipal waste from an energy perspective: A study of two Swedish municipalities. Resour. Conserv. Recy. 43, 51-73. DOI: 10.1016/j.resconrec.2004.05.001.
  • 18. Hong J., Luo Q., Wan X., Petrović Z.S., Shah B.K., 2012. Biopolymers from vegetable oils via catalyst- and solvent-free chemistry: Effects of cross-linking density. Biomacromolecules, 13, 261-266. DOI: 10.1021/bm201554x.
  • 19. Horner D.S., Foster P.G., Embley T.M., 2000. Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol .Biol. Evol., 17, 1695-1709. DOI: 10.1016/S0968-0004(01)02053-9.
  • 20. Jacquel N., Lo Ch-W., Wei Y-H., Wu H-S, Wang S.S., 2008. Isolation and purification of bacterial poly(3-hydroxyalkanoates). Biochem. Eng. J., 39, 15-27. DOI: 10.1016/j.bej.2007.11.029.
  • 21. Jirásková D., Poulíčková A., Novák O., Sedláková K., Hradecká V., Strnad M., 2009. High-throughput screening technology for monitoring phytohormone production in microalgae. J. Phycol., 45, 108-118. DOI: 10.1111/j.1529-8817.2008.00615.x.
  • 22. KBBE Report, 2010. The knowledge based bio-economy in Europe: Achievements and challenges. Available at: www.kbbe2010.be/en/kbbe2010/programme/kbbe-report.
  • 23. Kim B.S., 2000. Production of poly(3-hydroxybutyrate) from inexpensive substrates. Enzyme Microb. Tech., 27, 774-777. DOI: 10.1016/S0141-0229(00)00299-4.
  • 24. Koltuniewicz A.B., 2014. Sustainable process engineering – Prospects and opportunities. DeGruyter.
  • 25. Koltuniewicz A.B., Drioli E., 2008. Membranes in clean technologies – Theory and practice. WILEY.
  • 26. Krupp M., Widmann R., 2009. Biohydrogen production by dark fermentation: Experiences of continuous operation in large lab scale. Intl. J. Hydrogen Energy, 34, 4509-4516. DOI: 10.1016/j.ijhydene.2008.10.043.
  • 27. Levin D.B., Pitt L., Love M., 2004. Biohydrogen production: Prospects and limitations to practical application. Intl. J. Hydrogen Energy, 29, 173-185. DOI: 10.1016/S0360-3199(03)00094-6.
  • 28. Li H.B., Cheng K.W., Wong C.C., Fan K.W., Chen F., Jiang Y., 2007. Evaluation of antioxidant capacity and total phenolic content of different fractions of selected microalgae. Food Chem., 102, 771-776. DOI: 10.1016/j.foodchem.2006.06.022.
  • 29. Lintner K., Mas-Chamberlin C., Mondon P., Peschard O., Lamy L., 2009. Cosmeticals and active ingredients. Clin. Dermatol. 27, 461-468. DOI: 10.1016/j.clindermatol.2009.05.009.
  • 30. Liu J., Gu X., Robbins D., Li G., Shi R., McCord J.M., Zhao Y., 2009. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model. PLOS ONE, 4(4), e5284. DOI: 10.1371/journal.pone.0005284.
  • 31. Lods L.M., Dres C., Johnson C., Scholz D.B., Brooks G.J., 2000. The future of enzymes in cosmetics. Int. J. Cosmetic Sci., 22, 85-94. DOI: 10.1046/j.1467-2494.2000.00012.x.
  • 32. Maksymiec W., Wianowska D., Dawidowicz A.L., Radkiewicz S., Mardarowicz M., Krupa Z., 2005. The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J. Plant. Physiol., 162, 1338-1346. DOI: 10.1016/j.jplph.2005.01.013.
  • 33. Oilgae, 2014. Comprehensive report on attractive algae product opportunities – Preview. Available at: www.oilgae.com/ref/report/non-fuel-algae-products.html.
  • 34. Pinto F.A.L., Troshina O., Lindblad P., 2002. A brief look at three decades of research on cyanobacterial hydrogen evolution. Intl. J. Hydrogen Energy, 27, 1209-1215. DOI: 10.1016/S0360-3199(02)00089-7.
  • 35. Regulation (EC) No 1334/2008 of the European Parliament and the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Council
  • 36. Regulation (EEC) No 1601/91, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. Official J. European Union, L 354/34 - L 354/50.
  • 37. Sierra E., Acién F.G., Fernández J.M., García J.L., González C., Molina E., 2008. Characterization of a flat plate photobioreactor for the production of microalgae. Chem. Eng. J., 138, 136-147.DOI: 10.1016/j.cej.2007.06.004.
  • 38. Singh R.N., Sharma S., 2012. Development of suitable photobioreactor for algae production – A review. Renew. Sustain. Energy Rev., 16, 2347-2353. DOI: 10.1016/j.rser.2012.01.026.
  • 39. Tserki V., Matzinos P., Pavlidou E., Vachliotis D., Panayiotou C., 2006. Biodegradable aliphatic polyesters. Part I Properties and biodegradation of poly(butylene succinate-co-butylene adipate). Polym. Degrad. Stabil., 91, 367-376. DOI: 10.1016/j.polymdegradstab.2005.04.035.
  • 40. UANews, 2011. More Than Mere Pond Scum. Algae could soon become a valuable biofuel resource, according to research at the UA. UANews. Available at: https://uanews.arizona.edu/story/more-mere-pond-scum.
  • 41. Ulery B.D., Nair L.S., Laurencin C.T., 2011. Biomedical applications of biodegradable polymers. J. Polym. Sci. B. Polym. Phys., 49, 832-864. DOI: 10.1002/polb.22259.
  • 42. Xiu S., Shahbazi A., 2015. Development of green biorefinery for biomass utilization: A Review. Tr. Ren. Energy, 1, 4-15. DOI:10.17737/tre.2015.1.1.008.
  • 43. Yen H-W., Brune D.E., 2007. Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresource Technol., 98, 130-134. DOI: 10.1016/j.biortech.2005.11.010.
  • 44. Zaborsky O.R., 2007. BioHydrogen. Springer Science & Business Media.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88fe9fa9-7835-46c3-b0aa-2a16ccb6587b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.