Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
The dependence of changes in the relative intensity and the spectral degree of coherence on the refractive-index Cn2 of biological tissues, space correlation length σ0 and wavelength λ of the Gaussian Schell-model (GSM) vortex and non-vortex beams in biological tissues has been studied. It is shown that the intensity distribution of GSM vortex beams passing through the biological tissues undergoes several stages. The bigger Cn2 is, and the smaller σ0 is, the quicker the intensity evolution is. The attenuation of intensity for GSM vortex beams is much slower than that of non-vortex beams, thus the beam quality of the former is better than the latter. When propagating through the biological tissue, the phase singularities of GSM vortex beams will appear. As the propagation distance increases, the position of the phase singularities will shift, and these points will disappear where the changes in the spectral degree of coherence of GSM vortex beams are consistent with those of GSM non-vortex beams. At the same propagation distance, the bigger Cn2 is, and the smaller σ0 and λ are, the shorter the distance between the phase singularities and the z axis is, when the propagation distance z is in the range of 0–50 μm.
Czasopismo
Rocznik
Tom
Strony
203--215
Opis fizyczny
Bibliogr. 28 poz., rys.
Twórcy
autor
- Department of Physics, North University of China, Taiyuan 030051, China
autor
- Department of Physics, North University of China, Taiyuan 030051, China
autor
- Department of Physics, Taiyuan University of Science and Technology, Taiyuan 030024, China
Bibliografia
- [1] GIMENEZ Y., BUSSER B., TRICHARD F., KULESZA A., LAURENT J.M., ZAUN V., LUX F., BENOIT J.M., PANCZER G., DUGOURD P., TILLEMENT O., PELASCINI F., SANCEY L., MOTTO-ROS V., 3D imaging of nanoparticle distribution in biological tissue by laser-induced breakdown spectroscopy, Scientific Reports 6(7), 2016, p. 29936, DOI: 10.1038/srep29936.
- [2] SCHOTT S., BERTOLOTTI J., LÉGER J.-F., BOURDIEU L., GIGAN S., Characterization of the angular memory effect of scattered light in biological tissues, Optics Express 23(10), 2015, pp. 13505–13516, DOI: 10.1364/OE.23.013505.
- [3] XINGYUAN LU, XINLEI ZHU, KUILONG WANG, CHENGLIANG ZHAO, YANGJIAN CAI, Effects of biological tissues on the propagation properties of anomalous hollow beams, Optik 127(4), 2016, pp. 1842–1847, DOI: 10.1016/j.ijleo.2015.11.039.
- [4] DE BOER J.F., MILNER T.E., VAN GEMERT M.J.C., NELSON J.S., Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography, Optics Letters 22(12), 1997, pp. 934–936, DOI: 10.1364/OL.22.000934.
- [5] XIAOYING LIU, DAOMU ZHAO, The statistical properties of anisotropic electromagnetic beams passing through the biological tissues, Optics Communications 285(21–22), 2012, pp. 4152–4156, DOI: 10.1016/j.optcom.2012.06.033.
- [6] DUAN MEILING, ZHANG CHAO, LI JINHONG, Coherence and polarization properties of laser propagating thrugh biological tissues, Journal of Photochemistry and Photobiology B: Biology 172, 2017, pp. 88–94, DOI: 10.1016/j.jphotobiol.2017.05.007.
- [7] SCHMITT J.M., KUMAR G., Turbulent nature of refractive-index variations in biological tissue, Optics Letters 21(16), 1996, pp. 1310–1312, DOI: 10.1364/OL.21.001310.
- [8] FENG ZHOU, SHIJUN ZHU, YANGJIAN CAI, Spectral shift of an electromagnetic Gaussian Schell-model beam propagating through tissue, Journal of Modern Optics 58(1), 2011, pp. 38–44, DOI: 10.1080/ 09500340.2010.543294.
- [9] WANRONG GAO, Changes of polarization of light beams on propagation through tissue, Optics Communications 260(2), 2006, pp. 749–754, DOI: 10.1016/j.optcom.2005.10.064.
- [10] WANRONG GAO, KOROTKOVA O., Changes in the state of polarization of a random electromagnetic beam propagating through tissue, Optics Communications 270(2), 2007, pp. 474–478, DOI: 10.1016/j.optcom.2006.09.061.
- [11] WANRONG GAO, Change of coherence of light produced by tissue turbulence, Journal of Quantitative Spectroscopy and Radiative Transfer 131, 2013, pp. 52–58, DOI: 10.1016/j.jqsrt.2013.03.006.
- [12] YUQIAN WU, YIXIN ZHANG, QIU WANG, ZHENGDA HU, Average intensity and spreading of partially coherent model beams propagating in a turbulent biological tissue, Journal of Quantitative Spectroscopy and Radiative Transfer 184, 2016, pp. 308–315, DOI: 10.1016/j.jqsrt.2016.08.001.
- [13] MEILAN LUO, QI CHEN, LIMIN HUA, DAOMU ZHAO, Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues, Physics Letters A 378(3), 2014, pp. 308–314, DOI:10.1016/j.physleta.2013.11.022.
- [14] YUNGUANG WU, MEILING DUAN, YIJUN LI, Changes in the degree of polarization of random electromagnetic GSM vortex beams in biological tissues, Optik 149, 2017, pp. 95–103, DOI: 10.1016/j.ijleo.2017.09.020.
- [15] WANRONG GAO, Determination of spatial correlation functions of refractive index of living tissue, Journal of Microscopy 245(1), 2012, pp. 43–48, DOI: 10.1111/j.1365-2818.2011.03542.x.
- [16] LI J., DING C., LÜ B., Generalized Stokes parameters of random electromagnetic vortex beams propagating through atmospheric turbulence, Applied Physics B: Lasers and Optics 103(1), 2011, pp. 245 –255, DOI: 10.1007/s00340-010-4289-y.
- [17] JINHONG LI, JUN ZENG, MEILING DUAN, Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence, Optics Express 23(9), 2015, pp. 11556–11565, DOI: 10.1364/OE.23.011556.
- [18] ZAHID M., ZUBAIRY M.S., Directionality of partially coherent Bessel–Gauss beams, Optics Communications 70(5), 1989, pp. 361–364, DOI: 10.1016/0030-4018(89)90131-4.
- [19] ANDREWS L.C., PHILLIPS R.L., Laser Beam Propagation through Random Media, Second Edition, SPIE Press, Bellingham 2005, DOI: 10.1117/3.626196.
- [20] YURA H.T., Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium, Applied Optics 11(6), 1972, pp. 1399–1406, DOI: 10.1364/AO.11.001399.
- [21] GRADSHTEYN I.S., RYZHIK I.M., Table of Integrals, Series and Products, Academic Press, New York, 2007.
- [22] MANDEL L., WOLF E., Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge, 1995.
- [23] JINHONG LI, BAIDA LÜ, Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices, Journal of Optics A: Pure and Applied Optics 11(4), 2009, article ID 045710, DOI: 10.1088/1464-4258/11/4/045710.
- [24] JINHONG LI, BAIDA LÜ, Composite coherence vortices in superimposed partially coherent vortex beams and their propagation through atmospheric turbulence, Journal of Optics A: Pure and Applied Optics 11(7), 2009, article ID 075401, DOI: 10.1088/1464-4258/11/7/075401.
- [25] YONGPING HUANG, BIN ZHANG, ZENGHUI GAO, GUANGPU ZHAO, ZHICHUN DUA., Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence, Optics Express 22(15), 2014, pp. 17723–17734, DOI: 10.1364/OE.22.017723.
- [26] JIA XU, DAOMU ZHAO, Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence, Optics and Laser Technology 57, 2014, pp. 189–193, DOI: 10.1016/j.optlastec.2013.10.019.
- [27] WANG L., PONOMARENKO S.A., CHEN Z., Spectral coherence anomalies, Optics Letters 38(14), 2013, pp. 2557–2559, DOI: 10.1364/OL.38.002557.
- [28] GBUR G., TYSON R.K., Vortex beam propagation through atmospheric turbulence and topological charge conservation, Journal of the Optical Society of America A 25(1), 2008, pp. 225–230, DOI:10.1364/JOSAA.25.000225.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88fe74cf-502b-4bfc-8e75-e4d42aee8078