PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A data-driven predictive model of the grinding wheel wear using the neural network approach

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Advanced manufacturing depends on the timely acquisition, distribution, and utilization of information from machines and processes. These activities can improve accuracy and reliability in predicting resource needs and allocation, maintenance scheduling, and remaining service life of equipment. Thus, to model the state of tool wear and next to predict its remaining useful life (RUL) significantly increases the sustainability of manufacturing processes. there are many approaches, methods and theories applied to predictive model building. the proposed paper investigates an artificial neural network (ANN) model to predict the wear propagation process of grinding wheel and to estimate the RUL of the wheel when the extrapolated data reaches a predefined final failure value. The model building framework is based on data collected during external cylindrical plunge grinding. Firstly, usefulness of selected features of the measured process variables to be symptoms of grinding wheel state is experimentally verified. Next, issues related to development of an effective MLP model and its use in prediction of the grinding wheel RUL is discussed.
Rocznik
Strony
69--82
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Institute of Machine Tools and Production Engineering, Lodz, Poland
Bibliografia
  • [1] HERMANN M., PENTEK T., OTTO B., 2015 Design principles for Industrie 4.0 scenarios: A literature review, Technische Universitat Dortmund, Working Paper No. 01/2015.
  • [2] UHLMANN E., HOHWIELER E., GEISERT C., 2017, Intelligent production systems in the era of Industrie 4.0 – changing mindsets and business models, Journal of Machine Engineering, 17/2, 5-24.
  • [3] LEE J., BAGHERI B., KAO H-A., 2015, A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
  • [4] LEŻAŃSKI P., 2017, Architecture of supervisory systems for subtractive manufacturing processes in Industry 4.0 based manufacturing, Journal of Machine Construction and Maintenance, 1, (104), 59-64.
  • [5] KLOCKE F, 2009, Manufacturing processes 2, grinding, honing, lapping, Springer-Verlag, Berlin Heidelberg.
  • [6] TÖNSHOFF H.K., FRIEMUTH T., BECKER J.C., 2002, Process monitoring in grinding, CIRP Annals - Manufacturing Technology, 51/2, 551-571.
  • [7] TETI R., JEMIELNIAK K., O’DONNELL G., DORNFELD D. 2010, Advanced monitoring of machining operations, CIRP Annals - Manufacturing Technology, 59/2, 717-739.
  • [8] LIAO T.W., TING C.-F, QU J., BLAU P.J., 2007, A wavelet-based methodology for grinding wheel condition monitoring, International Journal of Machine Tools and Manufacture, 47, 580-592.
  • [9] LIAO T.W., 2010, Feature extraction and selection from acoustic signals with an application in grinding wheel condition monitoring, Engineering Application of Artificial Intelligence, 23/2010, 74-84.
  • [10] LIAO T.W., HUA G., QU J., BLAU P.J., 2006, Grinding wheel condition monitoring with hidden Markov model-based clustering methods, Machining Science and Technology, 10/2006, 511-538.
  • [11] LIAO W.T., TANG F., QU J., BLAU P.J., 2008, Grinding wheel condition monitoring with boosted minimum distance classifiers, Mechanical Systems and Signal Processing, 22, 217-232.
  • [12] LI-MING X., KAI-ZHOU X., YUN-DONG C, 2010., Identification of grinding wheel wear signature by a wavelet packet decomposition method, Journal of Shanghai Jiaotong University (Science), 15/3, 323-328.
  • [13] INASAKI, I., 1998, Sensor fusion for monitoring and controlling grinding processes, Proc. 5th Int. Conf. on Monitoring and Automatic Supervision in Manufacturing AC’98, Warsaw, 23-32.
  • [14] KARPUSZEWSKI B., WEHMEIER M., INASAKI I., 2000, Grinding monitoring system based on power and acoustic emission sensors, CIRP Annals – Manufacturing Technology, 49/1, 235-240.
  • [15] LEŻAŃSKI P., 2001. An intelligent system for grinding wheel condition monitoring. Journal of Materials Processing Technology, 109, 258-263.
  • [16] LEŻAŃSKI P., PIŁACIŃSKA M., 2016, The dominance-based rough set approach to cylindrical plunge grinding process diagnosis, Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-016-1230-1, 24.
  • [17] GAO R., WANG L., TETI R., DORNFELD D.,KUMARA S., MORI M., HELU M., 2015, Cloud-enabled prognosis for manufacturing, CIRP Annals – Manufacturing Technology, 64/2, 749-772.
  • [18] TIAN Z., WONG L., SAFAEI N., 2010, A neural network approach for remaining useful life prediction utilizing both failure and suspension histories, Mechanical Systems and Signal Processing, 24/5, 1542-1555.
  • [19] Mathworks, The MATLAB Neural Networks Toolbox, 2017.
  • [20] INASAKI I., KARPUSZEWSKI B., LEE H.-S., 2001, Grinding chatter – origin and suppression, CIRP Annals - Manufacturing Technology, 50/2/2001.
  • [21] LAJMERT P., LEŻAŃSKI P., 2013, Monitoring of external cylindrical plunge grinding process, Archives of Mechanical Technology and Automation, 33/3, 3-15.
  • [22] LEŻAŃSKI P, 2012, Automatic supervision of external cylindrical plunge grinding, Scientific Bulletin of the Lodz University of Technology, Monographs, 1120/427, 163 (in Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88fbc9e1-e745-4d00-b9cf-ebc036576bcf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.