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A DATA-DRIVEN PREDICTIVE MODEL OF THE GRINDING WHEEL WEAR 

USING THE NEURAL NETWORK APPROACH 

Advanced manufacturing depends on the timely acquisition, distribution, and utilization of information from 

machines and processes. These activities can improve accuracy and reliability in predicting resource needs and 

allocation, maintenance scheduling, and remaining service life of equipment. Thus, to model the state of tool 

wear and next to predict its remaining useful life (RUL) significantly increases the sustainability  

of manufacturing processes. there are many approaches, methods and theories applied to predictive model 

building. the proposed  paper investigates an artificial neural network (ANN) model to predict the wear 

propagation process of grinding wheel and to estimate the RUL of the wheel when the extrapolated data reaches 

a predefined final failure value. The model building framework is based on data collected during external 

cylindrical plunge grinding. Firstly, usefulness of selected features of the measured process variables to be 

symptoms of grinding wheel state is experimentally verified. Next, issues related to development of an effective 

MLP model and its use in prediction of the grinding wheel RUL is discussed. 

1. INTRODUCTION  

The idea of intelligent manufacturing systems has become a very stimulating subject 

in industrial production for the last twenty years. It requires manufacturing systems to be 

able to self-recognize the current state of all of their components and next to adapt their 

activities to the recognized conditions of production. The newest approach to this idea is  

the conception of the fourth industrial revolution named as Industry 4.0 [1,2]. This is a data 

driven production model in which all components of production systems in the form  

of cyber-physical systems (CPS) [3] communicate and interact with each other using 

an advanced network called Internet of Things (IoT) [2]. Implementation of such  

a conception requires present, local monitoring and production control systems to be 

replaced with the CPSs which link cyber space of Internet with material space of production 

[4]. Moreover, condition-based maintenance of the equipment and the performed processes 

has to be based on information about remaining useful life (RUL) of the system 

components. Accurate prediction of the equipment and tool RUL in such manufacturing 

systems is one of the crucial elements of effective implementation of the CPSs. 
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In the area of machining processes, among them also for grinding processes, the state 

of tool cutting ability has a basic meaning for final quality of the workpiece and economical 

results of given processes. However the wear propagation process of grinding wheels 

belongs to one of the most difficult in the domain of tool condition monitoring. Phenomena 

like irregular geometry and random changes of the number of active cutting edges on  

the wheel cutting surface (WCS), as well as self-sharpening of them are the source of this 

difficulty. The wear process of grinding wheels can arise in three different forms or in  

a combination of them: 

 dulling of abrasive grains (attritious wear), 

 cracking or pulling of the grains out (fracture wear), 

 gumming up of the WCS with chips (wheel loading).  

Usually a combination of all of the wear forms take place but during grinding with  

a properly selected set of parameters the attritious wear and fracture wear should dominate. 

The wheel loading is always rather the undesirable form of wheel wear and should be 

eliminated through the selection of the correct grinding wheel to the workpiece material.  

The fracture wear creates newly exposed sharp edges of grains on the WCS what 

causes a self-sharpening process of the wheel but also its radial wear (changes in its external 

shape and volume decrease). The attritious wear contributes insignificantly to the shape and 

volume changes however directly influences the level of grinding forces and temperature 

thus in this way it also has an impact on the fracture wear [5].  

The grinding wheel condition monitoring has been intensively investigated by many 

researchers. One of the first broad survey of these investigation is given in [6]. An important 

conclusion which results from this work is that there is a lack of a clear recommendation for 

the best set of features for grinding wheel monitoring. The most effective features depends 

on the process type and  its conditions. They should be selected from number of features 

offered with some redundancy by measuring and data processing units used for the given 

process. Next, a feature integration method should be chosen for the wheel wear process 

modelling [7]. 

Many works on grinding wheel condition monitoring during surface grinding have been 

done by T. W. Liao [8-11]. He used different features of the acoustic emission (AE) signal in 

time and frequency domains as well as different statistical and artificial intelligence 

classification techniques for the wheel state estimation. Results of these studies proved that 

the quality of classification depends on a correct signal feature selection, the cardinality  

of the learning vector and the grinding conditions. The best results (even up to 100%  

of appropriate decisions) were obtained for higher values of the specific material removal 

rates using the discrete wavelet decomposition of the AE signal and different methods  

of cluster analysis based on a distance matrix generated with the aid of the hidden Markov 

model. The grinding wheel wear during curve grinding using a white corundum grinding 

wheel was investigated in [10,12]. The authors took advantage of the combinational 

information of the decomposed vibration signal frequency components based on the wavelet 

packet decomposition. They concluded that the extracted features can be used in 

qualification of wheel wear condition and applied in prediction of the wear. A complex 

monitoring and controlling system for cylindrical grinding process was proposed in [13,14]. 

An artificial neural network (ANN) was used for estimation of the wheel life in this system. 
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A hybrid system for grinding wheel condition monitoring during external cylindrical 

grinding was proposed by Lezanski [15]. The system utilized data and their different 

processing methods from AE, vibration and grinding force components signals. A feed 

forward ANN was used for signal feature selection procedure using the weight pruning 

method and a neuro-fuzzy system for wheel condition estimation. The ANN could also be 

used for wheel condition modelling and estimation. The Dominance-based Rough Set 

Approach (DRSA) is proposed as a methodology for plunge grinding process diagnosis 

including the state of grinding wheel catting ability in [16]. A set of decision rules modeling 

the WCS wear propagation considering changes in its waviness and topography was 

generated based on a feature set extracted from the 14 features of measured signals.  

The presented studies indicates that in spite of the difficulty of grinding wheel wear 

propagation modeling of this process is a crucial topic for grinding effectiveness. Thus to 

allow grinding processes to be a valuable part of CBSs in Industry 4.0 based manufacturing 

there is a need to develop studies on grinding wheel wear propagation into research on 

predictive model building.  

Prognostic methods can be classified into four groups [17]:  

 physics based methods, 

 artificial intelligence based data driven methods, 

 statistics based data driven methods, 

 model based methods. 

Because each of individual method possesses not only advantages but also drawbacks, 

to overcome this problem, different types of integration of these methods are also used to 

obtain better performance in a given application. A detail discussion on strengths and 

weaknesses of all of the prognostic methods with a comprehensive survey of their 

applications to prediction of RUL of cutting tools is presented in [17] (none of the discussed 

applications is related to abrasive tools).  

The focus of this paper is to develop an artificial neural network (ANN) model to 

predict the wear propagation process of grinding wheel and to estimate the RUL  

of the wheel when the extrapolated data reaches a predefined final failure value. The model 

building framework is based on data collected during external cylindrical plunge grinding. 

Firstly, usefulness of selected features of the measured process variables to be symptoms  

of grinding wheel state is experimentally verified. Next, issues related to development  

of an effective ANN model for prediction of the grinding wheel RUL is discussed  

and presented. 

2. THE PREDICTIVE NEURAL NETWORK 

The structure of predictive neural model proposed in this research is based on  

the ANN model used by Tian at al. in 18]. However the applied training algorithm is 

different to obtain shorter times of the training procedure convergence and lower mean 

square errors. 

The structure of the proposed ANN model is presented in Fig. 1. It is a two-layer-

feedforward neural network. The first layer is the hidden layer with sigmoid neurons and  
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the second layer is the output layer with linear neurons. Such a network with an appropriate 

number of neurons in the hidden layer using a consistent data set for training is able to map 

well input data into corresponding output data. Therefore, this type of networks frequently 

have application in development of models for estimation and prediction of different 

phenomena [19]. 

 

 

Fig. 1. The structure of predictive neural network model 

The inputs to the network include the wheel life period values and the values  

of the features chosen as symptoms of the wheel condition. All these inputs are  

the measures identifying the wheel condition at the current inspection point and those at  

the previous inspection point. For example: if C1i is the value of the feature number 1 at  

the current inspection point i, C1i-1 is the value of this feature at the previous inspection 

point i-1. The volume of material removed from the workpiece per a grinding width unit 

since the last wheel dressing operation V
’
w [mm

3
/mm] (the specific material removal) is 

used as the measure of the wheel life period. Thus, V
’
w(i) is the value of specific material 

volume at the inspection point i and V’w(i-1) is the value of this volume at the previous 

inspection i-1.  

The two grinding parameters: the specific material removal rate Q’w, and the speed 

ratio q applied in each single grinding sample were additionally used as inputs to  

the network to take into consideration their influence on the grinding wheel wear process.  

The output of the network, denoted by L(i), is the value of the wheel life period 

achieved at the current inspection point i for a given grinding sample expressed as  

the percentage of the full life period achieved for this grinding sample. For example, if  

the full wheel life is equal to 429 [mm
3
/mm] and, at an inspection point i, the life period is 

equal to 300 mm
3
/mm, then the output value is equal to L(i) = 300/429 x 100% = 69,93%.  

From among many algorithms available for training feedforward neural networks,  

the Levenberg-Marquardt (LM) algorithm was chosen for application to the proposed 

network training. This algorithm seems to be very suitable for the considered application 
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because it is recommended for fitting problems and networks containing up to a few 

hundred weights. The LM algorithm requires more memory but is able to obtain lower mean 

square errors in shorter processing time than any of the other algorithms [19].  

One of the basic problems related to the results of neural network training is called 

overfitting. It can happen when the network is trained to minimize the mean square error 

only with the use of training set of data. As a result, the obtained network over fits  

the training samples but it does not have capability for generalization of new examples. 

A method called early stopping is used to overcome this problem.  

When the early stopping is used the available data is divided into three subsets: 

training, validation and testing. The first one is used for iterative calculating the mean 

square error after each epoch of training data and updating the network weights and biases. 

Simultaneously, the mean square error is monitored using the validation set. The validation 

error usually decreases during the initial phase of training, as does the training set error. 

However, when the network begins to over fit the training data, the error on the validation 

set typically begins to rise. This is the moment when the training should be stopped, and  

the weights and biases obtained at the minimum of the validation error should be returned as 

the optimal. The testing set error is used only to check how the obtain network fits the data 

earlier unknown to the network. If the error in the testing set reaches a minimum at  

a significantly different iteration number than the validation set error, this might indicate  

a poor division of the data set [19]. 

3. THE GRINDING PROCESS DATA BASE 

3.1. DETERMINATION OF GRINDING WHEEL LIFE CRITERION 

The external cylindrical plunge grinding process was chosen as the object of the 

presented research because it is one of the most commonly used types of grinding and it is 

characterized by a number of specific features resulting from its kinematic and geometric 

conditions. The workpiece, as well as the tool, performs rotary motions in this type  

of grinding and their peripheral surfaces possess an initial waviness and out-of-roundness 

errors. During grinding, as a result of these rotating motions, a phase shift arisen between 

the waves of the workpiece and the wheel causes a change of grinding depth after each 

revolution of them. In consequence, this process leads to continuous change of the waviness 

amplitudes on the workpiece and wheel and to a relative, self-excited vibration between 

them. This process is modulated by the phenomenon of wave geometrical interference 

which can result in the cut down of waves on the wheel and the workpiece, The degree  

of this cut down is expressed by a coefficient which is equal to the ratio between the height 

of the wave remaining correspondingly on the wheel and the workpiece surface and  

the amplitude of chatter generating this wave. The threshold frequency for a workpiece 

above which the cut down of the waves begins in conventional grinding is lower than 

500 Hz, whereas this frequency for the wheel, because of a much higher grinding ratio, is at 

least 100 times higher. Chatter frequencies in cylindrical grinding, which are close to  
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the natural frequency of the mechanical system [20], are usually higher than the workpiece 

chatter frequency, but much lower than the wheel chatter frequency. This means that wheel 

waviness can develop to a very high amplitude and explains why nearly all cylindrical 

grinding processes run under instability, taking into account the wheel regenerative chatter.  

An excessive development of the WCS waviness can lead to very dangerous events 

thus its amplitude value has a superior meaning to all of the others wheel life criteria. This is 

why the value of the WCS waviness amplitude is used as a grinding wheel life criterion in 

the presented research. 

3.2. DATA COLLECTION 

Grinding monitoring data were collected during tests carried out on a modified 

cylindrical grinding machine equipped with adequate control and measurement units 

[16,21]. During the tests the workpieces made of 38HMJ steel hardened to 53 HRC were 

ground using the 38A80KVBE grinding wheel. The range of grinding parameters applied 

during the tests exceeded the acceptable working ranges so that the diagnosis of phenomena 

like the wheel life period would be possible. To achieve this purpose, a specific material 

removal rate equal to 1, 2 and 3 mm
3
/mms, a speed ratio equal to 60, 100 and 400 and  

the wheel speed equal to 40 m/s were used. The tests were carried out in series. Each series 

represents a sequence of grinding cycles completed to the point at which the state  

of the grinding process was recognized as unmanageable because of appearance of such 

phenomena like huge vibrations or workpiece surface burn. For this reason, depending on 

the applied parameter combination, the individual series consist of 8 to 12 grinding cycles 

that were 400 to 600 mm
3
/mm of the specific material removal and for each series this was  

a higher volume than the recommended grinding wheel life. 

The force grinding components, vibration and the RMS value of the acoustic emission  

signals were recorded during each grinding cycle, whereas the raw AE signal was recorded 

every second grinding cycle. The vibration signal was measured by the 4370 B&K 

piezoelectric transducer mounted on the tailstock centre casing. The 3000R Gap Dittel 

wireless AE was applied for the measurement of the raw and, after an analogue RMS circuit 

processing, the RMS value of the AE signal. This sensor was attached to the face  

of the grinding wheel spindle [16,21]. 

For reliable multi-criteria assessment of the process state, the STATISTICA and  

a software package called the DAQSYSTEM developed in LabVIEW environment were 

used to calculate 14 statistical and spectral features of the measured on-line signals [16].  

To correlate the features of the measured on-line signals with the wheel waviness, after 

every second grinding cycle, the waviness of the WCS along the wheel circumference were 

measured with the aid of a specially designed measuring device [21]. The layout of this 

sensor is shown in Fig. 2. The grinding wheel was driven frictionally during measurements 

by the rotating workpiece which was provided with rubber rings on its outside diameter.  

A modified inductive LVDT sensor equipped with flat gauging slides made of leuco-

sapphire crystal and the VIS amplifier were used for the measurements of waviness.  

The same driving principle was used for grinding wheel profile measurements. In this case  
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the measuring head and the amplifier of the Carl Zeiss Jena ME-10 roughness sensor was 

used. The heads were mounted on a special slide which allowed precise positioning  

of the wheel profile perpendicularly to its circumferential surface in parallel direction to  

the vector of grinding wheel rotational speed. 

 

Fig. 2. Layout of the grinding wheel surface profile and waviness sensor  

These measurements were made in off-line mode because possibilities of an on-line 

measurement of the wheel waviness are very limited in practical applications. A spectral 

analysis of the measurements made with the aid of DAQSYSTEM allows an assessment  

of waviness of the wheel to be performed.  

The collected data consists of 78 objects which are grinding process samples 

diversified with respect to the specific material removal rate Q’w, the speed ratio q and  

the wheel cutting ability represented by the specific material removal V”w since the last 

wheel dressing. There are the 3 input conditions for each of the 78 grinding samples. Each 

object embodies a single sample of grinding process working cycle characterized by the 14 

measured signal features and the assessment of waviness of the wheel measured after each 

grinding test. 

3.3. DETERMINATION OF THE WHEEL WEAR SYMPTOMS 

Selection of the features which are best-correlated with the grinding wheel waviness 

from among the 14 calculated signal features was an important issue in the presented 

research, especially because of the great number of the signal features (14) in relation to  

the number of samples in the collected data set (78). The applied prediction oriented, 

iterative approach to the reduction of feature number was generally based on the concept  

of reducts used in the DRSA applications. The detail description of this methodology is 

presented in [16]. As a result of the feature selection, the following 5 features were chosen 

as the symptoms of the wheel wear propagation process: 
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 C1 - vibration signal average power spectrum in the range 600-1000 Hz, 

 C2 - vibration signal average power spectrum in the range 1200-2000 Hz, 

 C3 - entropy of the vibration signal wavelet components in the range 1875-2500 Hz, 

 C4 - entropy of the EARMS signal wavelet components in the range 625-1250 Hz, 

 C5 - variation coefficient of the EARMS signal. 

a) b) 

    

Fig. 3. Change of the power spectrum average value as a function of the specific material removal in the frequency 

range of: a) 600 – 1000 Hz, b) 1200 – 2000 Hz 

a) b) 

    

Fig. 4. Change of the entropy of the wavelet coefficients as a function of the specific material removal: a) in  

the frequency range of 1875-2500 Hz for the vibration signal, b) in the frequency range of 625-1250 Hz for  

the of the AE RMS signal 

The first 4 chosen symptoms of the wheel waviness development are results  

of the Digital Fourier Transform (DFT) and the Packet Wavelet Analysis (PWA) used as  

the processing methods for feature extraction from vibration, the raw AE and the root mean 

square (RMS) value of AE signals. All of them presents power spectrum measures of these 

signals in two similar ranges of frequency: around 600 to 1250 Hz and the range of about 

twice higher frequencies. They are very alike in their course as functions of the specific 

material removal (Fig. 3 and 4). It was checked that these frequency ranges include  

the natural frequencies of the ground workpiece and the machine spindle headstock [22].  

It confirms that the chatter frequencies are close to the natural frequencies of the machine-

workpiece-wheel system.  
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A spectral analysis of the wheel waviness measurements allows an assessment  

of waviness and out-of-roundness of the wheel to be performed. The harmonic components 

appearing in the measured profiles correspond to different frequencies of waves on the wheel 

circumference. The highest amplitudes appeared in the range of 10-50 waves per wheel 

circumference. Thus, the average amplitude of the DFT power spectrum of the wheel 

circumference profile in this range was used as a measure of the WCS waviness (Fig. 5).  

The DFT analysis shows that the WCS waviness, being a result of the chatter regenerative 

effect on the wheel, is a good indicator of the WCS macro-geometry state. 

To measure the strength of the linear relationship between the grinding WCS waviness 

and the power spectrum average value of vibration, as well as the energy of the applied 

wavelet decompositions in the both frequency ranges, the correlation coefficients between 

these variables as functions of the specific material removal were calculated. In most cases 

the coefficient values exceeded 0.9. 

4. THE PROPOSED PREDICTIVE ANN MODEL OF THE GRINDING WHEEL RUL 

4.1. THE NETWORK TRAINING 

As described in the section 3.2, the collected data base consists of 78 grinding samples 

grouped into 8 series.  Each series represents a number of cycles performed with given 

combination of Q’w and q and completed to the point at which the state of the grinding 

process was recognized as unmanageable because of appearance of such phenomena like 

huge vibrations or workpiece surface burn. For this reason, depending on the applied 

parameter combination, the individual series consist of 8 to 12 grinding cycles that were 400 

to 600 mm
3
/mm of the specific material removal and for each series this a higher volume 

than the recommended grinding wheel life. It means that to establish the data set for 

network training, validation and testing, the collected number of grinding samples in each 

series has to be limited to those for which the highest specific material removal V”w is 

smaller than the value related to the recommended value of criterion assumed for  

the grinding wheel life. The average amplitude of the DFT power spectrum of the wheel 

circumference profile in the range of 10-50 waves per wheel circumference as this criterion 

was adopted for this research in section 3.3. Taking into account the state of the art in 

grinding technology, the value of 0.025 (VRMS) was implemented as the threshold of this 

amplitude limiting the wheel grinding life. This is illustrated in Fig. 5. 

The wheel lives for each combination of grinding parameters resulting from the wheel 

threshold amplitude and the resultant overall number of data samples for the network 

training, validation and testing are presented in Table 1. Having the data set created as it is 

shown in Table 1, the MATLAB Neural Network Toolbox 2017 was used to developed an 

ANN based model of grinding wheel remaining useful life. The structure of this model is 

discussed in section 2 and illustrated in Fig. 1.  

After many training trials an optimal network was established. It comprises 14 neurons 

in the input layer, 10 neurons in the hidden layer and the out layer with one output returning 

the grinding wheel RUL. 
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Fig. 5. Wheel average waviness in the range of 10-50 waves per wheel circumference as a function of the specific 

material removal and the threshold amplitude for the wheel life  

Table 1. The wheel lives and the resultant number of data samples for each combination of grinding parameters  

Grinding 

conditions 

& wheel life 

Specific material removal inspection points [mm
3
/mm] No of 

samples 100 150 200 250 300 350 400 

Q’w 1;q60 

 

L=355 

X X     

 5 

 X X    

  X X   

   X X  

    X X 

Q’w 1;q100 

 

L=355 

X X     

 5 

 X X    

  X X   

   X X  

    X X 

Q’w 1;q400 

 

L=429 

X X      

6 

 X X     

  X X    

   X X   

    X X  

     X X 

Q’w 2;q60 

L=269 

X X   

 3  X X  

  X X 

Q’w 2;q100 

 

L=410 

X X      

6 

 X X     

  X X    

   X X   

    X X  

     X X 

Q’w 2;q400 

L=259 

X X   

 3  X X  

  X X 

Q’w 3;q100 

L=237 

X X  
 2 

 X X 

Q’w 3;q60 

L=159 
X X  1 

Total number of samples for network training 31 
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The 31 grinding samples of data set were randomly divided as follows: 21 samples to 

the training set, 5 samples to the validation set and 5 samples to the testing set.  

The Levenberg-Marquardt (LM) algorithm was used to learn the network. 

4.2. DISCUSSION OF RESULTS 

The performance of the obtained network can be analyzed using two plots. The first 

plot presents the mean square errors in function of the training epoch number for training, 

validation and testing procedures – Fig. 6.  

 

Fig. 6. Change of the mean square errors for training, validation and testing procedures 

The plot shows that at the third epoch validation performance reached a minimum.  

The course of validation and training curves are very similar to the third epoch. Starting 

from this epoch the validation curve begins to rise and the training performance rapidly 

decreases what means that the network begins to over fit the training data. This is  

the moment when the training should be stopped and the weights and biases obtained  

the optimal values. Summarizing, the learning process of the obtained network proceeded 

properly. 

The next method of network validating are regression plots, which show  

the relationship between the outputs of the network and the targets – Fig. 7. The individual 

plots show the correlation between outputs and targets for training, validation, testing and 

for training, testing and validation together. The values of linear regression coefficients for 

all the plots are higher than 0.9. It means that the obtained network possesses a good 

capability for data generalization. The prediction results obtained with the developed 

grinding wheel RUL model are shown in Table 2, where the target lives, predicted lives and 

prediction errors are percentage of the target full wheel lives for the individual samples in 

the training data set.  
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The RUL prediction results show that the overall average prediction error is equal to 

10.82% of the target full wheel lives for the individual samples in the data set. There are 5 

cases when the RUL of wheel is longer than those really reached. It can be to some extent 

dangerous for the quality of the ground surface, especially when the predicted life is higher 

than 120% of the real one what takes place for the 16th sample. But this grinding sample is 

specific because its course of the wheel waviness increase is significantly flat (Fig. 5). 

 

Fig. 7. Regresion plots of the network 

Table 2. The RUL prediction results 

No of sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Target Life 

% 
42.25 56.33 70.42 84.51 98.59 42.25 56.33 70.42 84.51 98.59 34.97 46.46 58.28 69.93 81.59 93.24 

Predicted 

Life % 
24.06 28.44 56.75 72.29 100.9 24.53 31.22 56.47 77.78 93.33 28.57 38.64 48.36 64.43 76.94 115.1 

Prediction 

error % 
18.19 27.89 13.67 12.21  -2.33 17.72 25.11 13.95   6.73   5.26   6.40   7.82   9.92   5.50   4.65  -21.8 

No of sample 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 - 

Target Life 

% 
55.76 74.35 92.94 36.57 48.78 60.98 73.17 85.37 97.56 57.92 77.22 96.53 63.29 84.39 9434 - 

Predicted 

Life % 
43.80 59.45 76.61 32.39 46.27 53.39 69.44 81.18 107.9 68.42 76.92 108.6 56.37 72.51 75.88 - 

Prediction 

error % 
11.96 14.90 16.33   4.14   2.51   7.59   3.73   4.19  -10.4  -10.5   0.30  -12.0   6.92 11.88 18.46 - 
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For most of the data set samples (for 26 from 31) the predicted wheel lives are shorter 

than their target lives. Such results are better from the point of view of the required 

workpiece surface quality although if the error is bigger than 20% the results are 

unsatisfactory from a cost and productivity perspective. But it occurred only in 2 data set 

samples. For 14 grinding samples, the predicted wheel lives were smaller than the target 

lives by less than 10%. Such a distribution of the results are difficult to explain because 

neural network models are “black box” models so it is impossible to analyze qualitative 

influence of the individual inputs on the network output.  

It seems that in the presented application, the structure of the network plays the most 

important role. Because the inputs are the measures identifying the wheel condition at  

the current inspection point and those at the previous point the output strongly depends on 

the increase of waviness for the succeeding inspection points especially for the late in  

the wheel life inspection points. Thus taking into account significant differences in distances 

between the inspection points and the end of the wheel life for the individual samples and 

the relatively small number of training samples, the obtain RUL prediction errors can be 

recognized as satisfactory. 

5. CONCLUSIONS 

In the paper, an ANN based model of the grinding wheel RUL prediction is developed. 

The model uses the wheel life period values and the values of the features chosen as 

symptoms of the wheel condition as well as two basic grinding conditions as inputs.  

The output of the network is the value of the wheel life period achieved at the current 

inspection point expressed as the percentage of the full life period achieved for this grinding 

sample. The amplitude of the wheel waviness was proposed as the criterion of its wear.  

The value of 0.025 (VRMS) was implemented as the threshold of this amplitude limiting  

the wheel grinding life. The ANN was trained using 31 samples of grinding selected from 78 

grinding data samples according to the above assumptions. Five features extracted from 

measured signals correlated with the changes of the wheel waviness were chosen as 

the symptoms of the wheel wear propagation process and used in the training data set.  

The MATLAB Neural Network Toolbox 2017 was used to developed the ANN model.  

To overcome the network overfitting problem, the Levenberg-Marquardt (LM) algorithm 

was used to learn the network.   

The results of the grinding wheel RUL prediction can be characterized by the obtained 

overall average prediction error. It is equal to 10.82% of the target full wheel lives for the 

individual samples in the training data set. Taking into account properties of the data set 

used for the model training, the obtain RUL prediction errors can be recognized as 

satisfactory. The obtained results indicate that the prediction ability of the ANN model can 

be increased when the late in the wheel life inspection points will be use for the model 

training and, as always in the case of neural models, the number of training samples will be 

higher. The presented ANN approach to predictive model building seems to be promising. 

However, one of the biggest weakness of the ANN models is the lack of knowledge about 

the confidence level of the prognosis output what is a significant obstacle in practical 
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applications of this type of RUL models, especially in the context of the CPSs requirements. 

Thus, this problem provides an objective for future research. 
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