
108    Measurement Automation Monitoring, 2018, no. 04, vol. 64, ISSN 2450-2855 
 

Piotr WIĘCEK, Dominik SANKOWSKI   
LODZ UNIVERSITY OF TECHNOLOGY, INSTITUTE OF APPLIED COMPUTER SCIENCE, Stefanowskiego 18/22, 90-537 Łódź, Poland 

   

 

Low-cost, low-resolution IR system with super-resolution 
interpolation of thermal images for industrial applications  
 

Abstract 

 

In this paper authors present application of deep neural networks for super-
resolution interpolation of infrared images. A residual neural network with 

reduced number of layers was used. The transfer learning using RGB 

visual images was applied in this research. The validation of the network 

was performed for 3224 and 160120 pixels infrared images, with the 

up-sampling scale factors 2, 3, 4, 5 and 6. Monitoring of high temperature 

industrial processes like inductive heating and thermal hardening is the 

main application of proposed methods. 
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1. Introduction 
 

Thermal imaging is a growing field of various applications. It is 

due the substantial progress both in Infra-Red (IR) technology and 

advanced signal and image processing [11, 12]. Nowadays, there 

are available low-cost low-resolution (LR) IR detectors and 

cameras. In most cases, they need an extra image processing to 

provide the acceptable performance. Image interpolation is one of 

the possible improvements of thermal images quality. To 

accomplish it authors propose to use the deep learning system 

based on a residual neural network.  

The concept of residual networking is already known for years 

[1-9]. Now, these networks are even more attractive because of 

using deep learning systems in many applications. Deep Residual 

Neural Networks (DRNNs) are used to reduce the influence of 

vanishing gradients during learning [1, 2]. Vanishing gradients 

may slow down or even stop learning process. This problem is 

more severe if a network is used for images’ interpolation. In 

contrast to other applications of DRNNs such as segmentation, 

recognition or classification, during interpolation compared 

images do not differ much in successive iterations of learning. In 

consequence the cost function during optimization slowly 

approaches the minimum and there is a danger that it can come to 

a standstill.  

The classical concept of RNN is using a skip connection (short-

cut) over a given layer as shown in Fig. 1. Such extra link prevents 

learning from stopping for low difference between images. On the 

other hand such short-cut connection simplifies the network 

allowing reduction of layer used and in consequence it results in 

faster operation and learning [4]. 

 

 
 

Fig. 1.  The original concept of a by-pass in the residual block of neural network 

 

There are different architectures of DRNNs. In some 

applications, the dense residual blocks with multiply short-cut 

connections are used [5, 7, 8]. There are known solutions for 

simultaneous multiscale interpolation [5]. In this case, the network 

consists of parallel convolutional blocks with increasing filter 

orders – 33, 55, 77, etc. and an appropriate concatenation 

block [5]. Recently, a different concept was implemented using 

combining of compressive sensing and deep learning [9]. It is  

a new solution using an additional image preprocessing in form of 

Discrete Cosine Transform to reconstruct High Resolution (HR) 

images. The presented results are not convincing, as the authors 

stopped interpolation at the up-sampling scale equal to 3 [9]. 

 

2. Low-resolution low-cost IR system for 
monitoring inductive heating processes 

 

Low-resolution IR imaging systems become inexpensive and 

useful in variety of industrial applications. Today, there are 

available low-cost microbolometer matrix detectors with 160120, 

8080 or 3224 pixels only [15, 16, 17]. Some of them are 

already equipped with Analog-to-Digital Converter (ADC) and 

with on-chip calibration allowing serial transmission of 

temperature in the floating number format with C units. In 

addition, such systems have an integrated IR optics [11, 12]. They 

are recommended for fast prototyping of low-cost industrial 

solutions. In the research presented in this paper, we used 3224 

pixels Long Wavelength Infrared Radiation (LWIR) sensor with 

Noise Equivalent Temperature Difference, NETD=0.1 K at 1 Hz 

frame rate and accuracy of 1 K [16]. The sensor was connected to 

an ARM microcontroller and then to a host computer using USB 

port. The microcontroller interface contained ARM Cortex M4 

microprocessor with 72 MHz clock, 256 kB flash memory and 64 

kB of RAM. Block diagram of the system and its picture are 

presented in Fig. 2 and Fig. 3 [18] respectively. Dedicated 

software was written both for the embedded system and the host. 

 

 
 

Fig. 2. Transmission channel of IR signal from 3224 sensor to a host  

 

 

 
 

Fig. 3.  Low-cost, low resolution 3224 IR sensor and 32-bit ARM Cortex M4 

interface used in the experiments 

 

The final application of the low-cost super-resolution IR system 

is monitoring of high-temperature industrial processes. One of the 

examples is the thermal hardening of steel and brass samples by 

inductive heating. A prototype of inductive heating system 

developed recently is presented in Fig. 4 [13].  

https://pl.bab.la/slownik/angielski-polski/successive
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Fig. 4.  The inductive heating coil with a brass sample monitored by a low-cost,  

low-resolution IR system 

 

The exemplary thermal images of the inductor and hardening 

sample during inductive heating, obtained from 3224 and 

160120 low-resolution IR cameras are presented in Fig. 5.  

 

 
a) 

 
b) 

Fig. 5.  Exemplary images from the low-resolution IR systems with 3224 (a)  

and 160120 (b) resolution cameras 

 

 

3. Residual CNNs for super-resolution  
of thermal images interpolation 

 

For super-resolution interpolation of thermal images we propose 

to use a residual neural network irRCNN presented in Fig. 6. In 

fact, this is the known architecture [4]. The aim of this initial state 

of research was to make the literature review on super-resolution 

convolutional neural networks and verify the effectiveness of 

using residual networks for up-sampling of thermal images with 

high up-scaling factors. As a result, by getting the experience 

during implementation of residual deep learning systems, authors 

intend to propose an original dedicated solution for LR thermal 

images processing.  
 

 
 

Fig. 6.  The proposed architecture of residual irCRNN with long skip connection,  

C, R, U –convolutional, residual and up-sampling blocks, respectively [4] 

 

The network used in the research belongs to the class of 

Residual-In-Residual (RIR) DRNN [7]. It consist both long and 

short skip connections, as the each residual block has its own local 

shortcut lines – Fig. 1 and 6. Many authors confirm an advantage 

of using RIR architecture, peculiarly in interpolation tasks. In 

addition, the proposed architecture was simplified by binning 

batch normalization blocks and final ReLU rectification in each 

residual block [4]. In return, the network needed less 

computational power with similar and acceptable effectiveness of 

interpolation. Obviously, the main original goal of this research 

was to apply RIR simplified deep neural network system for 

thermographic images. To our knowledge, although there was an 

announcement on using super-resolution interpolation for IR 

images [9], this research shows implementation of simplified RIR 

neural networks for super-resolution interpolation with up-scaling 

factors 2, 3, 4, 5 and 6. 

 

4. Training data set 
 

Training data set consisted of 800 high-resolution visual RGB 

images of different sizes, e.g.: 20401404 or 10241356. 

Learning is divided into epochs. From each high-resolution image, 

sub-images of 192192 sizes were randomly selected, as shown in 

Fig. 7. In each epoch of the learning process, 16000 sub-images 

were processed. The sub-images were grouped into bathes for 

simultaneous processing. Each batch consisted of 16 sub-images. 

The images were taken from DIV2K database [14]. DIV2K 

contains high-resolution images with different sizes, e.g. 

20401404 or 10241356. The advantage of using DIV2K is that 

each high-resolution image has its down-sampled counterpart with 

the scale factor of 2 ,3 and 4. Unfortunately, there are no images 

available with resolution 5 and 6 times lower. Therefore we 

performed down-sampling interpolation for scale factor 5 and 6. In 

this research bicubic interpolation was used to degrade visual 

images for learning. Authors noticed that bicubic down-sampling 

is not the best one for super-resolution interpolation, and therefore 

intend to use other interpolation algorithms in the next step of the 

research. 

It has to be underlined that some authors claim that progressive 

learning is preferable for interpolation tasks [4]. It means that it is 

much better to learn a deep network starting from the low value of 

scale, and then increase it up to the maximum scale. Authors 

follow this concept. The exemplary results of learning are 

presented in Fig. 8, and Fig. 9.  

All results presented in this paper were obtained using  

a computer equipped with 4Xeon 2.2 GHz CPU, 20GB memory 

and Tesla 4, 16 GB GPU. Each batch of 16 sub-images was 

processed within a few seconds as shown in Table 1.  

 
Tab. 1. Execution time of batches of 16 sub-images segmented from high resolution 

images in learning phase 

 

2 3 4 5 6 

4.2 s 1.7 s 1.2 s 0.9 s 0.2 s 

 

 

 
 

Fig. 7.  Exemplary high-resolution image and randomly cropped 192192 subimage 

taken for learning 
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5. Results 
 

At first, the irRCNN network was trained using high resolution 

RGB visual images. Then, IR images of 160120 were degraded 

by down-sampling with factors 2, 3, 4, 5 and 6 using bicubic 

interpolation. These degraded images were introduced to the 

irRCNN to perform up-sampling and get super-resolution images 

with the same interpolation scale factors 2, 3, 4, 5 and 6. The 

bicubic interpolation was performed in parallel for comparison. In 

order to compare quantitatively the original and interpolated 

images, the Peak-Signal-to-Noise Ratio (PSNR) as well as the 

Structural Similarity Index Measure (SSIM) were calculated. The 

comparison results both for irCRNN and bicubic interpolation for 

different scales are presented in Table 2. 

The performance of learning process of the irCRNN is presented 

in Figs. 8 and 9 using L1 loss function and PSNR curves as the 

functions of no. of epochs.  

 

 
 

 
 

Fig. 8.  Convergence of learning process expressed by means of L1 loss function and 

PSNR for scale 2 

 

 

 
 

 
 

Fig. 9.  Convergence of learning process expressed by means of L1 loss function  

and PSNR for scale 6 

 

After learning, validation of the proposed super-resolution 

residual neural network was made. The first validation concerned 

10 HR visual images from DIV2K image database.  

 
Tab. 2. Performance of the IRRCNN for the inductive heating coil with the hardened 

brass sample inside 

 

 SR 

PSNR, dB 

SR 

SSIM 

bicubic 

PSNR, dB 

bicubic 

SSIM 

2 24.48 0.9617 23.42 0.9517 

3 23.25 0.9527 21.49 0.9115 

4 20.72 0.8937 20.24 0.8671 

5 20.07 0.8838 19.57 0.8372 

6 19.63 0.8461 19.02 0.8071 

 

The next validation was made using thermal images from low-

resolution camera with detector of 160120 pixels/sensors. The 

thermal images of a sample during inductive heating were taken 

for this validation. For each scale, the IR image was first down-

sampled and then up-sampled using super-resolution and bicubic 

methods. The results are presented in Fig. 10. 

 

 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 10.  IR image of 160120 size first down-sampled using bicubic interpolation 

and then up-sampled: a) 2 super-resolution, b) 2 using bicubic 

interpolation, c) 3 super-resolution, d) 3 using bicubic interpolation 

 

Finally, a qualitative validation was performed with maximum 

up-sampling scale equal to 6. The original 160120 image of the 

coil and a brass sample during inductive heating was up-sampled 6 

times to 960720 size. The results are presented in Fgs. 11. 

 

 
a) 

 
b) 

 
c) 

 

Fig. 11.  Middle parts of 160120 IR images 6 times up-sampled using a) – NN,  

b) – irCRNN b) and c) – bicubic interpolation 

 

Similar results were obtained for 3224 IR sensor – Fig. 12 and 

13. In this case, the final resolution is 192144.   
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a) 
 

b) 

 

Fig. 12.  IR images from 3224 low-cost IR sensor interpolated 6 times using 

irCRNN (a) and bicubic algotihm (b) 

 

 

 
a) 

 
b) 

 

Fig. 13.  IR images of inductive heater during hardening process obtained from 

3224 low-cost IR sensor and interpolated 6 times using irCRNN (a)  

and bicubic algorithm (b) 

 

 

6. Future works and conclusions 
 

Authors validated quantitatively the RIR deep learning neural 

network for IR image resolution improvement. It was shown that 

it is possible to get super-resolution IR images with up-scaling 

factor 6 using cost-effective DRNN.  

Authors noticed that both the architecture and the learning 

algorithm are essential to achieve the high performance of IR 

image interpolation. Obviously, there is always a trade-off 

between complexity, accuracy and effectiveness of any system. 

For thermal imaging, this problem has to be investigated. All 

available scientific reports claim that a presented method 

outperforms the other existing ones. As evidence the authors 

present typically the case study results.  

In the future works, authors intend to replace RGB 38bit visual 

images by 14-16 bit gray-scale thermal images, both for learning 

and for interpolation. According our experience, the degradation 

algorithm of HR to LR images during learning is very important. 

For learning one should reduce the resolution without losing much 

of important details of IR images. Last but not least problem is to 

choose an optimal DRNN architecture of super-resolution 

network. It is still open question how many of residual blocks, and 

short and long skip connections should be taken to build up the 

DRNN. The same problem can be posed for convolutional filters 

used. It seems that all these parameters depend on entrance low 

resolution of IR images. At last, the essential problem is how 

much authors can augment the up-scaling factor with acceptable 

quality improvement. 
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