Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Synthetic refrigerants are being phased out gradually in accordance with international environmental protection protocols because of global warming and ozone layer depletion. Adopting R290/R600 refrigerant, an environmentally friendly refrigerant, to replace R134a, a high global warming potential refrigerant, provides one of the solutions. In this study, exergy analysis of R134a and TiO2 suspended with lubricant and R290/R600 with a composition of 60% R290 and 40% R600 (60:40) was investigated in vapour compression system (VCRS) using R290/R600 in TiO2 nanomixture lubricant and compared with R134a and R290/R600 in pure lubricant. At the inlets and outlets, the main components of the VCRS are connected to temperature and pressure sensors to measure the inlet and outlet temperatures and pressures. The results obtained were used to analyses the exergy losses at various VCrR components (compressor, condenser, evaporator, expansion valve) were investigated to determine the refrigerator’s total exergy destruction (Exdest.Total) and efficiency (ηex). The Exdest.Total of R290/R600 in pure lubricant and R290/R600 TiO2 nanomixture lubricant was reduced by 26.9% and 42.3%, respectively, and system ηex increased by 27.7% and 38.9% respectively when compared to R134a in the system. Hence, TiO2 suspended with R290/R600 is potential a substitute for R134a.
Wydawca
Czasopismo
Rocznik
Tom
Strony
237--243
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wzory
Twórcy
autor
- University of Johannesburg, Department of Mechanical Engineering Science, Johannesburg, South Africa
- University of Johannesburg, Department of Mechanical Engineering Science, Johannesburg, South Africa
- University of Johannesburg, Process, Energy and Environmental Technology Station (PEETS), Johannesburg, South Africa
Bibliografia
- [1] B.O. Bolaji, Z. Huan, Ozone depletion and global warming: Case for the use of natural refrigerant - a review, Renew. Sustain. Energy Rev. 18, 49-54 (2013). DOI: https://doi.org/10.1016/j.rser.2012.10.008
- [2] T.O. Babarinde, S.A. Akinlabi, D.M. Madyira, The Use of Hydrocarbon Refrigerants in Combating Ozone Depletion and Global Warming: A Review. 2021.
- [3] M. Fatouh, M. El Kafafy, Assessment of propane/commercial butane mixtures as possible alternatives to R134a in domestic refrigerators. Energy Convers. Manag. 47, 15-16, 2644-2658 (2006). DOI: https://doi.org/10.1016/j.enconman.2005.10.018
- [4] K. Harby, Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview, Renew. Sustain. Energy Rev. 73, no. January, 1247-1264 (2017). DOI: https://doi.org/10.1016/j.rser.2017.02.039
- [5] T.O. Babarinde, S.A. Akinlabi, D.M. Madyira, F.M. Ekundayo, Science Direct Enhancing the energy efficiency of vapour compression refrigerator system using R600a with graphene nanolubricant. Energy Reports 6, 1-10 (2020). DOI: https://doi.org/10.1016/j.egyr.2019.11.031
- [6] G. Righetti, C. Zilio, G.A. Longo, Comparative performance analysis of the low GWP refrigerants HFO1234yf, HFO1234ze(E) and HC600a inside a roll-bond evaporator. Int. J. Refrig. 54 (2015). DOI: https://doi.org/10.1016/j.ijrefrig.2015.02.010
- [7] C.P.K. Mathews, Exergy analysis of a domestic refrigerator using eco-friendly R290/R600a refrigerant mixture as an alternative to R134a. Int. J. Appl. Eng. Res. 9, 22, 15773-15781 (2014). DOI: https://doi.org/10.1007/s10973-013-3264-3
- [8] D. Jung, C.B. Kim, K. Song, B. Park, Testing of propane/isobutane mixture in domestic refrigerators. Int. J. Refrig. 23, 7, 517-527 (2020). DOI: https://doi.org/10.1016/S0140-7007(99)00084-5
- [9] G. Yan, C. Cui, J. Yu, Energy and exergy analysis of zeotropic mixture R290/R600a vapor-compression refrigeration cycle with separation condensation. Int. J. Refrig. 53, 155-162 (2015). DOI: https://doi.org/10.1016/j.ijrefrig.2015.01.007
- [10] R. Kumar, Computational energy and exergy analysis of R134a, R1234yf, R1234ze and their mixtures in vapour compression system. Ain Shams Eng. J. 9, 4, 3229-3237 (2018). DOI: https://doi.org/10.1016/j.asej.2018.01.002
- [11] J. Sun, W. Li, B. Cui, Energy and exergy analyses of R513a as a R134a drop-in replacement in a vapor compression refrigeration system / Analyse exergétique et énergétique du R513a comme frigorigène de remplacement immédiat du R134a dans un système frigorifique à compression de 112, 348-356 (2020). DOI: https://doi.org/10.1016/j.ijrefrig.2019.12.014
- [12] X. Chen, K. Liang, Z. Li, H. Jiang, J. Xu, Energy and exergy analysis of domestic refrigerators using R152a to replace R134a, Therm. Sci. Eng. Prog. 29, no. October 2021, 101235 (2022). DOI: https://doi.org/10.1016/j.tsep.2022.101235
- [13] J.M. Belman-Flores, V.H. Rangel-Hernández, S. Usón, C. Rubio-Maya, S. Us, Energy and exergy analysis of R1234yf as drop-in replacement for R134a in a domestic refrigeration system. Energy 132, 116-125 (2017). DOI: https://doi.org/10.1016/j.energy.2017.05.074
- [14] M. Rasti, S. Aghamiri, M.S. Hatamipour, Energy efficiency enhancement of a domestic refrigerator using R436a and R600a as alternative refrigerants to R134a. Int. J. Therm. Sci. 74, 86-94 (2013). DOI: https://doi.org/10.1016/j.ijthermalsci.2013.07.009
- [15] M.M. Joybari, M.S. Hatamipour, A. Rahimi, F.G. Modarres, Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system. Int. J. Refrig. 36, 4, 1233-1242 (2013). DOI: https://doi.org/10.1016/j.ijrefrig.2013.02.012
- [16] A. Bas, Experimental investigation of R600a as a low GWP substitute to R134a in the closed-loop two-phase thermosyphon of the mini thermoelectric refrigerator 211, no. April (2022). DOI: https://doi.org/10.1016/j.applthermaleng.2022.118501
- [17] O.A. Alawi , N.A.C. Sidik, The effect of temperature and particles concentration on the determination of thermo and physical properties of SWCNT-nanorefrigerant. Int. Commun. Heat Mass Transf. 67, 8-13 (2015). DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.06.014
- [18] A.A.M. Redhwan, W.H. Azmi, M.Z. Sharif, R. Mamat, N.N.M. Zawawi, Comparative study of thermo-physical properties of SiO2 and Al2O3 nanoparticles dispersed in PAG lubrican. Appl. Therm. Eng. 116, 823-832 (2017). DOI: https://doi.org/10.1016/j.applthermaleng.2017.01.108
- [19] R. Saidur, S.N. Kazi, M.S. Hossain, M.M. Rahman, H.A. Mohammed, A review on the performance of nanoparticles suspended with refrigerants and lubricating oils in refrigeration systems. Renew. Sustain. Energy Rev. 15, 1, 310-323 (2011). DOI: https://doi.org/10.1016/j.rser.2010.08.018
- [20] T.O. Babarinde, D.M. Madyira, P.M. Mashinini, Performance evaluation of graphene-enhanced lPG in a vapour compression refrigeration system: An experimental approach. Energy Reports 8, no. May, 1226-1235 (2022). DOI: https://doi.org/10.1016/j.egyr.2022.07.140
- [21] T.O. Babarinde, S.A. Akinlabi, D.M. Madyira, Enhancing the Performance of Vapour Compression Refrigeration System using Nano Refrigerants: A review. IOP Conf. Ser. Mater. Sci. Eng. 413, 012068 (2018). DOI: https://doi.org/10.1088/1757-899X/413/1/012068
- [22] W.H. Azmi, M.Z. Sharif, T.M. Yusof, R. Mamat, A.A.M. Redhwan, Potential of nanorefrigerant and nanolubricant on energy saving in refrigeration system - A review. Renew. Sustain. Energy Rev. 69, no. December 2015, 415-428 (2017). DOI: https://doi.org/10.1016/j.rser.2016.11.207
- [23] A. Malvandi, S. Heysiattalab, D.D. Ganji, Thermophoresis and Brownian motion effects on heat transfer enhancement at film boiling of nanofluids over a vertical cylinder. J. Mol. Liq. 216, 503-509 (2016). DOI: https://doi.org/10.1016/j.molliq.2016.01.030
- [24] T.O. Babarinde, S.A. Akinlabi, D.M. Madyira, Comparative study of energy performance of R600a/TiO2 and R600a/MWCNT nanolubricants in a vapor compression refrigeration system 21, 317-332 (2020).
- [25] V. Nair, P.R. Tailor, A.D. Parekh, Nanorefrigerants: A comprehensive review on its past, present and future. Int. J. Refrig. 67, 290-307 (2016). DOI: https://doi.org/10.1016/j.ijrefrig.2016.01.011
- [26] J.U. Ahamed, R. Saidur, H.H. Masjuki, A review on exergy analysis of vapor compression refrigeration system. Renew. Sustain. Energy Rev. 15, 3, 1593-1600 (2011). DOI: https://doi.org/10.1016/j.rser.2010.11.039
- [27] R. Kumar, D.K. Singh, S. Chander, An experimental approach to study thermal and tribology behavior of lPG refrigerant and MO lubricant appended with ZnO nanoparticles in domestic refrigeration cycle 4, (4) (2020).
- [28] M.Z. Sharif, W.H. Azmi, R. Mamat, A.I.M.M. Shaiful, Mechanism for improvement in refrigeration system performance by using nanorefrigerants and nanolubricants - A review, Int. Commun. Heat Mass Transf. 92, no. February, 56-63 (2018). DOI: https://doi.org/10.1016/j.icheatmasstransfer.2018.02.012
- [29] M.Z. Sharif, W.H. Azmi, A.A.M. Redhwan, R. Mamat, Investigation of thermal conductivity and viscosity of Al2O3/PAG nanolubricant for application in automotive air conditioning system Étude de la conductivité thermique et de la viscosité de nanolubrifiant Al2O3/PAG appliqué au système de conditionnement d'air d'automobile. Int. J. Refrig. 70, 93-102 (2016). DOI: https://doi.org/10.1016/j.ijrefrig.2016.06.025
- [30] M.M. Khairat Dawood, F. El-Tantawy, O. Sharaf, T. Nabil, A.M. El-Saei, The influence of thermal properties of delafossite nanofluid CuAlO2 on the turbulent natural convection inside a cavity. Alexandria Eng. J. (2018). DOI: https://doi.org/10.1016/j.aej.2018.05.008
- [31] M. Mastani, M. Sadegh, A. Rahimi, Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system. Analyse exergétique et optimisation du R600a comme frigorigène de remplacement du R134a dans le système frigorifique d'un réfrigérateur domestique. Int. J. Refrig. 36, 4, 1233-1242 (2013). DOI: https://doi.org/10.1016/j.ijrefrig.2013.02.012
- [32] T.O. Babarinde, S.A. Akinlabi, D.M. Madyira, O.S.S. Ohunakin, D.S.S. Adelekan, S.O.O. Oyedepo, Comparative analysis of the exergetic performance of a household refrigerator using R134a and R600a. Int. J. Energy a Clean Environ 19, 1-2, 37-48 (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88f52222-0e5b-47a4-958d-4af4cf04f110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.