PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A holistic approach to the total energy and cost for carbon capture and sequestration

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbon capture and sequestration from a stationary source comprises four distinct engineering processes: separation of CO2 from the other flue gases, compression, transportation, and injection into the chosen storage site. An analysis of the thermodynamic and transport properties of CO2 shows that dissolving this gas in seawater at depths more than 600 m is, most likely, an optimal long-term storage method; and that for transportation, the CO2 must be in the denser supercritical state at pressures higher than 7.377 MPa. The separation, compression, transportation, and injection processes require significant energy expenditures, which are determined in this paper using realistic equipment efficiencies, for the cases of two currently in operation coal power plants in Texas. The computations show that the total energy requirements for carbon removal and sequestration are substantial, close to one-third of the energy currently generated by the two power plants. The cost analysis shows that two parameters – the unit cost of the pipeline and the discount factor of the corporation – have a very significant effect on the annualized cost of the CCS process. Doubling the unit cost of the pipeline increases the total annualized cost of the entire CCS project by 36% and increasing the discount rate from 5% to 15% increases this annualized cost by 32%.
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 67 poz., rys.
Twórcy
  • Department of Engineering, Texas Christian University, Fort Worth, TX, 76129, USA
Bibliografia
  • [1] US-EPA. (2020). Sources of Greenhouse Gas Emissions. Report at: https://www.epa.gov/ghgemissions/sources-greenhouse-gasemissions [accessed in June 2023].
  • [2] Metz, B., Davidson, O., de Coninck, H.C., Loos, M., & Meyer, L.A. (Eds.). (2007). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge,UK.
  • [3] Zevenhoven, R., Fagerlund, J., & Songok, J.K. (2011). CO2 mineral sequestration: developments toward large-scale application. GHG: Science and Technology, 1(1), 48-57. doi: 10.1002/ghg3.7
  • [4] Rao, A., & Rubin, E. (2006). Identifying cost-effective CO2 control levels for amine-based CO2 capture systems. Industrial and Engineering Chemistry Research, 45(8), 2421-2429. doi:10.1021/ie050603p
  • [5] Valenti, G., Bonalumi, D., & Macchi, E. (2009). Energy and exergy analyses for the carbon capture with the Chilled Ammonia Process (CAP). Energy Procedia, 1(1), 1959-1066. doi: 10.1016/j.egypro.2009.01.140
  • [6] Bonalumi, D., Lillia, S., & Valenti, G. (2019). Rate-based simulation and techno-economic analysis of coal-fired power plants with aqueous ammonia carbon capture. Energy Conversion and Management, 199, 111966. doi: 10.1016/j.enconman.2019.111966
  • [7] Weiland, R.H., Dingman, J.C., & Cronin, D.B. (1997). Heat Capacity of Aqueous Monoethanolamine, Diethanolamine, Nmethyldiethanolamine, and N-methyldiethanolamine-Based Blends with Carbon Dioxide. Journal of Chemical and Engineering Data, 42, 1004-1006. doi: 10.1021/je960314v
  • [8] Aliyon, K., Hajinezhad, A., & Mehrpooya, M. (2019) Energy assessment of coal-fired steam power plant, carbon capture, and carbon liquefaction process chain as a whole. Energy Conversion and Management, 199, 111994. doi: 10.1016/j.enconman.2019.111994
  • [9] Carapellucci, R., Di Battista, D., & Cipollone, R. (2019) The retrofitting of a coal-fired subcritical steam power plant for carbon dioxide capture: A comparison between MCFC-based active systems and conventional MEA. Energy Conversion and Management, 194, 124-139. doi: 10.1016/j.enconman.2019.04.077
  • [10] Rochelle, G., Chen, E., Freeman, S., Van Wagener, D., Xu, Q., & Voice, A. (2011). Aqueous piperazine as the new standard for CO2 capture technology. Chemical Engineering Journal, 171(3), 725–733. doi: 10.1016/j.cej.2011.02.011
  • [11] Li, X., Wang, S., & Chen, C. (2013). Experimental study of energy requirement of CO2 desorption from rich solvent. Energy Procedia, 37, 1836-1843. doi: 10.1016/j.egypro.2013.06.063
  • [12] Furcasa, F.E., Wanawan, P., Chacartegui, R., & Afzal, W. (2020). Sodium carbonate-based post combustion carbon capture utilising trona as main sorbent feed stock. Energy Conversion and Management, 208, 112484. doi: 10.1016/j.enconman.2020.112484
  • [13] Strube, R., Pellegrini, G., & Manfrida, G. (2011). The environmental impact of post-combustion CO2 capture with MEA, with aqueous ammonia, and with an aqueous ammonia–ethanol mixture for a coal-fired power plant. Energy, 36, 3763–3770. doi:10.1016/j.energy.2010.12.060
  • [14] Lee, W.S., Lee, J.C., Oh, H.T., Baek, S.W., Oh, M., & Lee, C.H. (2017). Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant. Energy, 134, 731-742. 10.1016/j.energy.2017.06.059
  • [15] Kunze, C., Riedl, K., & Spliethoff, H. (2011). Structured exergy analysis of an integrated gasification combined cycle (IGCC) plant with carbon capture. Energy, 36, 1480-1487. doi: 10.1016/j.energy.2011.01.020
  • [16] Arabkhalaj, A., Ghassemi, H., & Markadeh, R.S. (2016). Thermodynamic evaluation of integrated gasification combined cycle: Comparison between high-ash and low-ash coals. International Journal of Energy Research, 40(12), 1638–1651. doi: 10.1002/er.3541
  • [17] Rosner, F., Qin, C., Rao, A., & Samuelsen S. (2019) Thermoeconomic analyses of concepts for increasing carbon capture in high-methane syngas integrated gasification combined cycle power plants. Energy Conversion and Management, 199,112020. doi: 10.1016/j.enconman.2019.112020
  • [18] Petrakopoulou, F., Boyano, A., Cabrera, M., & Tsatsaronis, G. (2011). Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology.International Journal of Greenhouse Gas Control, 5(3), 475-482. doi: 10.1016/j.ijggc.2010.06.008
  • [19] Akinola, T.E., Bonilla Prado, P.L., & Wang, M. (2022). Experimental studies, molecular simulation and process modelling simulation of adsorption-based post-combustion carbon capture for power plants: A state-of-the-art review. Applied Energy, 317,119156. doi: 10.1016/j.apenergy.2022.119156
  • [20] Zhang, X., He, X., & Gundersen, T. (2013). Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy and Fuels, 27(8), 3021798. doi: 10.1021/ef3021798
  • [21] Li, C., Guo, S., Ye, X., & Fu, W. (2019). Performance and thermoeconomics of solar-aided double-reheat coal-fired power systems with carbon capture. Energy, 177, 1-15. doi: 10.1016/j.energy.2019.04.058
  • [22] Carapellucci, R., Giordano, L., & Vaccarelli, M. (2015). Analysis of CO2 post-combustion capture in coal-fired power plants integrated with renewable energies. Energy Procedia, 82, 350–357. doi: 10.1016/j.egypro.2015.11.801
  • [23] Saghafifar, M., & Gabra, S. (2020). A critical overview of solar assisted carbon capture systems: Is solar always the solution? International Journal of Greenhouse Gas Control, 92(10), 102852. doi: 10.1016/j.ijggc.2019.102852
  • [24] Michaelides, E. E. (2020). Exergy and the Conversion of Energy. Cambridge Univ. Press, Cambridge, UK.
  • [25] Paltsev, S., Morris, J., Kheshgi, H., & Herzog, H. (2021). Hardto-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Applied Energy, 300, 117322. doi: 10.1016/j.apenergy.2021.117322
  • [26] Lee, H., Lee, J., & Koo, Y. (2022). Economic impacts of carbon capture and storage on the steel industry–A hybrid energy system model incorporating technological change. Applied Energy, 317,119208. doi: 10.1016/j.apenergy.2022.119208
  • [27] Al Baroudi, H., Awoyomi, A., Patchigolla, K., Jonnalagadda, K., & Anthony, E.J. (2022). A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage. Applied Energy, 287, 116510. doi: 10.1016/j.apenergy.2021.116510
  • [28] Michaelides, E.E. (2021). Thermodynamic Analysis and Power Requirements of CO2 Capture, Transportation, and Storage in the Ocean. Energy, 230, 120804. doi: 10.1016/j.energy.2021.120804
  • [29] Zhai, H., Rubin, E.S., & Versteeg, P.L. (2011). Water use at pulverized coal power plants with post-combustion carbon capture and storage. Environmental Science and Technology, 45, 2479–2485. doi: 10.1021/es1034443
  • [30] Korbol, R., & Kaddour, A. (1995). Sleipner West CO2 disposal: injection of removed CO2 into the Utsira formation. Energy Conversion and Management, 36(6–9), 509–512. doi: 10.1016/0196-8904(95)00055-i
  • [31] Tanaka, S., Koide, H., & Sasagawa, A. (1995). Possibility of underground CO2 sequestration in Japan. Energy Conversion and Management, 36(6–9), 527–530. doi: 10.1016/0196-8904(95)00059-M
  • [32] Kharaka, Y.K., Cole, D.R., Hovorka, S.D., Gunter, W.D., Knauss, K.G., & Freifeld B.M. (2006). Gas-water-rock interactions in Frio formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins. Geology, 34(7), 577–580. doi: 10.1130/G22357.1
  • [33] Ozaki, M., Minamiura, J., Kitajima, Y., Mizokami, S., Takeuchi, K., & Hatakenka, K. (2001). CO2 ocean sequestration by moving ships. Journal of Marine Science and Technology, 6(2), 51-58.doi: 10.1007/s773-001-8375-8
  • [34] Caldeira, K., & Wickett, M.E. (2003). Anthropogenic carbon and ocean pH. Nature, 425, 365-365. doi: 10.1038/425365a
  • [35] Caldeira, K., & Wickett, M.E. (2005). Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. Journal of Geophysical Research-Oceans,110(C9), C09S04. doi: 10.1029/2004JC002671
  • [36] REFPROP. (2013). Reference Thermodynamic and Fluid Transport Properties. National Institute of Standards and Technology, Boulder, Colorado.
  • [37] Wallace, M., Goudarzi, L., Callahan, K., & Wallace, R. (2015). A Review of the CO2 Pipeline Infrastructure in the U.S. DOE/NETL Report-2014/1681
  • [38] Philips, P. (1912). The viscosity of carbon dioxide. Proceedings of the Royal Society, 87, 48-61.
  • [39] https://www.engineeringtoolbox.com/carbon-dioxide-dynamickinematic-viscosity-temperature-pressure-d_2074.html [accessed Feb. 2, 2023].
  • [40] Li, Y.H., & Tsui, T.F. (1971). The Solubility of CO2 in Water and Sea Water. Journal of Geophysical Research, 76(18), 4203-4207. doi: 10.1029/JC076i018p04203
  • [41] Song, Y., Chen, B., Nishio, B., & Akai, B. (2005). The study on density change of carbon dioxide seawater solution at high pressure and low temperature, Energy, 30(11–12), 2298–2307. doi:10.1016/j.energy.2003.10.022
  • [42] Hamond, H.F., & Fechner-Levy, E.J. (2000). Chemical Fate and Transport in the Environment. Academic Press, San Diego.
  • [43] Karmakar, S., Kolar, A.K. (2013). Thermodynamic analysis of high-ash coal-fired power plant with carbon dioxide capture. International Journal of Energy Research; 37(6), 522–34. doi:10.1002/er.1931
  • [44] Davison, J.E. (2005). CO2 capture and storage and the IEA Greenhouse Gas R&D Programme. Workshop on CO2 issues, Middelfart, Denmark.
  • [45] Nessi, P., Papadopoulos, A., Kazepidis, P., Polichroniadis, A., Nitourou G., Voutetakis, S., & Seferlis, P. (2022). Pilot Scale Assessment of a Novel Phase-change Solvent for Energy Efficient Post-combustion CO2 Capture, Journal of Environmental Management, 317(C), 115489. doi: 10.1016/j.jenvman.2022.115489
  • [46] Michaelides, E.E., Crowe, C.T., & Schwarzkopf, J.D. (Eds.) (2017). Multiphase Flow Handbook (2nd ed.). CRC Press, Boca Raton.
  • [47] Munson, B. R., Young, D. F., Okiishi, T. H., & Huwbsch, W. W. (2009). Fundamentals of Fluid Mechanics. Wiley.
  • [48] European Commission Report: https://joint-research-centre.ec.europa.eu/jrc-news/global-CO2-emissions-rebound-2021- after-temporary-reduction-during-covid19-lockdown-2022-10-14_en [accessed June 3, 2023].
  • [49] Hovorka, S.D., Meckel, T.A., & Trevino, R.H. (2013). Monitoring a large-volume injection at Cranfield, Mississippi—Project design and recommendations. International Journal of Greenhouse Gas Control, 18, 345-360. doi: 10.1016/j.ijggc.2013.03.021
  • [50] EIA. (2009). Sleipner Project CO2 Capture and Storage. EIA Greenhouse Gas R&D Programme Report.
  • [51] McBride-Wright, M., Maitland, G.C., & Trusler, J.P.M. (2015) Viscosity and Density of Aqueous Solutions of Carbon Dioxide at Temperatures from 274 to 449 K and at Pressures up to 100 MPa. Journal of Chemical Engineering Data, 60(1),171−180. doi: 10.1021/je5009125
  • [52] Fritching, U., & Li, X.G. (2017). Spray Systems. In Multiphase Flow Handbook (2nd ed.). Michaelides, E.E., Crowe, C.T., & Schwarzkopf, J.D. (Eds.). pp. 1059−1090, CRC Press, Boca Raton.
  • [53] Michaelides, E.E. (2006). Particles, Bubbles and Drops, Their motion, Heat and Mass Transfer. World Scientific, New Jersey
  • [54] Cadogan, S.P., Maitland, G.C., & Trusler, .J.P.M. (2015). Diffusion Coefficients of CO2 and N2 in Water at Temperatures between 298.15 K and 423.15 K at Pressures up to 45 MPa. Journal of Chemical Engineering Data, 59(2), 519−525. doi: 10.1021/je401008s
  • [55] Liu, Q., Endo, H., Fukuda, K., Shibahara, M., & Zhang, P. (2016). Experimental Study on Solution and Diffusion Process of Single Carbon Dioxide Bubble in Seawater. Mechanical Engineering Journal, 3(2), 1–9. DOI: 10.1299/mej.16-00269
  • [56] https://www.eia.gov/electricity/data/browser/#/plant/7097 [accessed in June 2023].
  • [57] https://www.eia.gov/electricity/data/browser/#/plant/6146 [accessed in June 2023].
  • [58] Viebahn, P., & Chappin, E.J.L. (2018). Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage - A Bibliometric Analysis. Energies, 11(9), 2319.DOI: 10.3390/en11092319
  • [59] Smith, C.E. (2016). Natural gas pipeline profits, construction both up. Oil and Gas Journal, September 5.
  • [60] Smith, E., Morris, J., Kheshgi, H., Teletzke, G., Herzog, H., & Paltsev, S. (2021). The cost of CO2 transport and storage in global integrated assessment modelling. International Journal of. Greenhouse Gas Control, 109(2), 103367. doi: 10.1016/j.ijggc.2021.103367
  • [61] McKaskle, R. (2021). Screening-Level Cost Estimates for CO2 Capture and Transportation. DOE report, DOE- FE0029381-11.
  • [62] How is the cost per mile determined? https://hanginghco.com/ natural-gaspipeline-construction-cost-per-mile/last [accessed in June 2023].
  • [63] https://www.eia.gov/electricity/data.php [accessed July 10,2023].
  • [64] Sullivan, W.G., Wicks, E.M., & Luxhoj,J.T. (2023). Engineering Economy (12th ed.). Pearson, New Jersey.
  • [65] Park, C.S. (2007). Contemporary Engineering Economics (4th ed.). Pearson, New Jersey.
  • [66] Götze, U., Northcott, D., & Schuster, P. (2015). Investment Appraisal: Methods and Models (2nd ed.). Springer, Heidelberg.
  • [67] Michaelides, E. E. (2018). Energy, the Environment and Sustainability. CRC Press, Boca Raton.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88f12ac2-06dd-4b8c-8b51-4594dcd4631a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.