
Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

119

Sugier Jarosław
ORCID ID: 0000-0003-1452-3067

Wrocław University of Science and Technology, Faculty of Electronics, Poland

Memory resources in hardware implementations of BLAKE and

BLAKE2 hash algorithms

Keywords

BLAKE hash algorithm, implementation efficiency, memory, loop unrolling, resource utilization

Abstract

In contemporary computer systems security issues are very important for both safety and reliability reasons thus

application of appropriate cryptographic methods is a necessity in system design and maintenance. This paper

deals with one such method – BLAKE hash function – and investigates its implementation in hardware. The

algorithm was a candidate proposed for the SHA-3 contest and, although it was not selected in the final round as

the winner, it was very well received for its cryptographic strength and performance, being still used as a hash

method of choice in contemporary IT systems. In this paper we discuss a specific modification in hardware

realizations of the function which eliminates need for involved data paths distributing message bits among the

round units by using auxiliary memory modules for repetitive storage of the message inside each round instance.

The idea was implemented in realizations of both BLAKE and BLAKE2 versions of the algorithm in

four different organizations: the standard iterative one and three high-speed loop-unrolled architectures with 2, 4

and 5 rounds instantiated in hardware. Together with standard (without RAM) implementations this produced

a total of 16 test cases: after implementation in a popular Spartan-3 device from Xilinx their parameters allowed

for exhaustive evaluation of the proposed modification. The results reveal that the modification outstandingly

enhances size of all the tested architectures: on average, occupation of the FPGA array is reduced at least by half

while the improvements in speed, although not so spectacular, are also visible. Additional analyses indicate that

the method can also increase overall efficiency of routing, helps in implementation of the loop-unrolled

architectures and strengthens optimizations introduced by the BLAKE2 version of the algorithm.

1. Introduction

Although BLAKE eventually lost to Keccak in the

SHA-3 competition the cipher is still often selected

as a hash function of choice in contemporary data

processing systems due to its excellent

cryptographic strength and high efficiency in

software. Potential of its hardware implementations,

like of any other SHA-3 candidate, was extensively

studied e.g. in [6]-[8]. In this paper we focus on one

particular aspect of BLAKE hardware realizations,

dealing with challenges caused by its specific

peculiarity: the need of involved distribution of

message bits among cipher rounds. Implementation

of this distribution is much more cumbersome in

hardware than in software and its elimination can

significantly reduce FPGA utilization and improve

overall performance. The proposed idea consists in

replacing the distribution with repetitive storage of

the message in RAM modules located within every

round instance. In the paper we test this solution in

4 different architectures of the cipher: the standard

iterative one and three loop-unrolled organizations

with 2, 4 and 5 rounds instantiated in hardware, for

both BLAKE and BLAKE2 variants. The results

found after their implementation in popular Spartan-

3 devices from Xilinx are compared to parameters

of analogous architectures implemented without

memory so that the savings in array utilization can

be measured against supplementary cost of occupied

block RAM modules.

The first results investigating potential of the

proposed idea were presented in [12]. In this work

we extend them by adding the BLAKE2 variant of

the algorithm and by introducing exact evaluation of

the required memory capacity which is crucial in

ASIC (non-FPGA) implementations.

Sugier Jarosław

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms

120

The contents of the paper is organized as follows.

After introducing the family of BLAKE hash

functions in the next section, in chapter 3 we present

standard iterative and loop unrolled architectures

used for its implementation, describe the proposed

method of RAM application and evaluate required

capacity of memory resources needed for its

realization. Then in chapter 4 we discuss the results

obtained after implementation of the modified

architectures and evaluate them against known

parameters of the analogous organizations without

the modification. The analyses include direct

comparison of the architectures before and after the

modification as well as its influence on the

efficiency of the loop unrolling mechanism and on

optimizations introduced in the BLAKE2 version of

the algorithm.

2. The family of BLAKE algorithms

In this study we are considering those size variants

of the BLAKE algorithms which generate 256b hash

output, internally handling 32b words and 512b

state: BLAKE-256 and BLAKE2s.

2.1 BLAKE

In BLAKE-256 ([1]) the plaintext message m of

length l < 2
64

 bits is first padded with string

“10…01|l|64” in such a way that its total bit length is

a multiple of 512 (where |l|64 denotes 64-bit

unsigned big-endian representation of the length l).

Then the padded message is split into 512b blocks

m
0
…m

N-1
 and the hash output h(m) is iteratively

computed according to the HAIFA iteration scheme

[5]:

h
0
 := IV

for i = 0 ... N − 1

 h
i+1
 := compress(h

i
, s, t

i
, m

i
)

return h
N

The upper indices
i
 will symbolize ordinal number

of the message block and the lower ones – indices of

the internal words inside the compression function;

moreover, IV is a constant pattern initializing the

hash chain value h
0
 (adopted from the SHA-2

standard), s represents a salt (a 128b auxiliary free

parameter provided for randomized hashing

required e.g. in digital signature schemes), and t
i
 –

a 64b counter giving a number of message bits

hashed so far.

Like in other hash algorithms based on Merkle-

Damgård construction, processing of a free-length

message stream consists in repetitive application of

a compression function compress() on one message

block m
i
. Its implementation is the actual challenge

in realization of the algorithm. For definition of the

function the specification introduces 16 constant

words c0…c15 and ten 16-element permutations

0…9 used for reordering message and constant

words in the computations.

Internal processing of the compression is organized

around a state - a 4x4 matrix of words v0… v15, and

is executed as follows. Initially the state is filled

with the current chain hash value h
i
, the salt and the

counter (but not with the m
i
 bits!), partially xor’ed

with the c0…c7 constants:










































71615040

33221100

7654

3210

15141312

111098

7654

3210

ctctctct

cscscscs

hhhh

hhhh

vvvv

vvvv

vvvv

vvvv

 (1)

Then it goes through nr = 14 rounds with each round

modifying twice all the words by applying a G

function:

 G0(v0, v4, v8, v12); G1(v1, v5, v9, v13);

 G2(v2, v6, v10, v14); G3(v3, v7, v11, v15);
(2)

and then

 G4(v0, v5, v10, v15); G5(v1, v6, v11, v12);

 G6(v2, v7, v8, v13); G7(v3, v4, v9, v14).
(3)

Each Gi() function call transforms a set of four

v words given as explicit parameters; as an

additional side input the message words are also

loaded although they do not appear on the argument

list. The ordinal function number i = 0 ÷ 7

determines which permutation, message and

constant words are used within each specific Gi()

instance so that all 16 message words and constants

take part in each round. The first set of the functions

in eq. (2) operate on words from column of the

matrix, while the second in eq. (3) – on words from

diagonals, and this corresponds to column and row

rounds in ChaCha algorithm where the G function

itself is called a quarterround ([3]-[4]).

The function Gi(a, b, c, d) of a round number r (0 ÷

13) is defined as a sequence of the following

operations:

 a := a + b + (mr' (2i)  c r' (2i + 1))

 d := (d  a) >> 16

 c := c + d

(4)

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

121

 b := (b  c) >> 12

 a := a + b + (mr' (2i + 1)  cr' (2i))

 d := (d  a) >> 8

 c := c + d

 b := (b  c) >> 7

where r' = r mod 10 (number of the  permutations

is limited to 10) and the operators denote the

following transformations of the words:

 - bitwise xor of two bit vectors,

+ - addition mod 2
32

 of two bit vectors (i.e. regular

32b addition with carry out ignored),

>> - right rotation by a constant number of

positions.

After 14 iterations, the state produced by the last

round is xor’ed with the input h
i
 and the salt s to

give the return value of h
i+1

:

 h
i+1

 := hi  si mod 4  vi  vi + 8, i = 0 … 7. (5)

2.2 BLAKE2

Extensive tests and cryptanalyses during the SHA-3

contest proved that the original BLAKE proposal

offered a very large security margin. In 2013 the

authors, based upon experience gathered after the

public evaluation, proposed an improved version of

the method – called BLAKE2 – with modifications

aimed mainly towards its simplification and

optimization ([2]). In a brief summary the following

changes were introduced (the 256-bit version of the

algorithm is considered):

• number of rounds was reduced from 14 to 10;

• message padding was simplified and its

functionality was partially replaced with finalization

flags f0 and f1 which signal the last message block

and the last node in tree hashing;

• initialization of the h
0
 chain value was extended

with parameter block (which includes, among

others, the salt and the finalization flags);

• the state initialization (eq. 1) was changed into:









































71605140

3210

7654

3210

15141312

111098

7654

3210

IVIVIVIV

IVIVIVIV

fftt

hhhh

hhhh

vvvv

vvvv

vvvv

vvvv

 (6)

• the salt was removed from argument list of the

compression function and was kept exclusively for

the h
0
 initialization;

• definition of the G function was simplified as:

 a := a + b + mr(2i)

 d := (d  a) >> 16

 c := c + d

 b := (b  c) >> 12

 a := a + b + mr(2i + 1)

 d := (d  a) >> 8

 c := c + d

 b := (b  c) >> 7,

(7)

The constants c were dropped altogether from the

specification and they are not used neither in (6) nor

in (7). Also, because the number of rounds has been

cut to 10, there is no need to introduce r’ in (7) as

the round number modulo 10.

For efficiency of hardware implementations

investigated in this paper most of the above changes

are of little significance: resources needed for both

the h
0
 and state initializations are negligible when

compared to the hardware representing the actual

compression executed in the eight instances of the

G functions. Also the reduction in the number of

rounds, while obviously cutting the number of clock

cycles needed for completion of the computation,

can be done with trivial adjustments in the control

unit. Nevertheless, removing the c constants indeed

to some extent simplifies hardware realization of the

G function: keeping a total of 16 words, each 32b

wide, in multiple ROM modules and multiplexing

them on the two inputs of each G instance is the

primary difference between the hardware of

BLAKE and BLAKE2 realizations – although it is a

relatively minor one looking on complexity of the

remaining parts in equations (7).

3. Implementing the algorithms in hardware

3.1 The loop unrolling mechanism

Processing scheme of the BLAKE algorithms is

typical to any round-based cipher and it can be

efficiently implemented in software in a CPU-based

system in an iterative manner: operations of a single

round are expressed in the code once and then

applied to the state variables vi repeatedly in a loop

nr times. When transferring the algorithm to

hardware (either ASIC or FPGA) the designer is

facing a larger diversity of feasible implementation

options. In general, there are two opposite extreme

approaches: the iterative loop of the cipher can be

completely unrolled with all the rounds replicated in

hardware as a cascade of nr modules, or the loop is

not unrolled at all with just one round module

implemented in hardware and its operation on state

signals is repeated nr times (that is, in nr clock

Sugier Jarosław

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms

122

cycles) in a manner resembling software iterations.

Furthermore, as a mid-range solution the loop can

be unrolled in part: one fourth, for example, of the

rounds can be reproduced in hardware and the state

signals are passed through them four times. In this

paper, after universal taxonomy presented e.g. by

Gaj et al. ([6]), an architecture with k unrolled

rounds will be denoted as xk while the basic

iterative one – as x1.

In this study we focus on high speed organizations

and the test suite consisted of the following 4

organizations:

• x1: the basic iterative architecture with one round

implemented in hardware and the state being passed

though it repeatedly in 14 (BLAKE) or 10

(BLAKE2) clock cycles (i.e. each complete round is

computed in one clock tick);

• x2: modification of the above with a combinational

cascade of two rounds implemented in hardware

with total computation done in 7 or 5 clock cycles

(with each clock tick the state is propagated through

two rounds);

• x4: the cascade is built from 4 rounds and 4 or 3

clock cycles are required for complete computation

(the final result is taken from the second round in

the cascade to get nr = 14 = 3 × 4 + 2 or 10 = 2 × 4 +

2);

• x5: as in the previous case but with 5 rounds

unrolled in hardware; in BLAKE 3 clock cycles are

needed for complete computation (the final result is

taken from the fourth round in the cascade to get 14

= 2 × 5 + 4) while in BLAKE2 the computation

takes 2 cycles and the result is taken from the last

round.

3.2 Peculiarities of message distribution

Although BLAKE followed the rules of in-round

processing of ChaCha cipher ([3]), it introduced

significantly different distribution of the message

bits among the rounds. In ChaCha and in majority of

other hash functions (including SHA-3 winner

KECCAK) the message bits which enter the

compression are routed only to the input to the first

cipher round in parallel with other data like salt,

counter or nonce, forming the initial value of the

state. That is, the message bits enter only beginning

of the round cascade and are not propagated to each

round separately: after creating the initial state the

message bits are not utilized afterwards. BLAKE

uses a different approach: instead of being loaded at

the input of the round cascade, the message words

are sent to each of the Gi functions (two words per

function) as the equations from the set (4) or (7)

illustrate.

The authors consider this change as a relatively

minor extension of the ChaCha processing scheme.

Indeed, it may be so in software implementation:

even if each G function operates in a separate thread

of CPU execution, extra reads of RAM locations

which store the message words do not alter the

overall arrangement of data handling and just adds

another operations to the sequence of already

running ones. In hardware, though, this means that

the message bits must be provided separately to

each Gi instance since they take part in the

computations throughout all the iterations and not

only in their initialization phase. This leads to

creation of a completely new, 512b wide data path

which has not been needed neither in ChaCha,

Salsa20 nor in Keccak as we have analysed in our

previous works ([9]-[10]). In effect this doubles

total width of the data path running along the round

cascade from 512b (the state) to 1024b (the state

plus the message bits). This is illustrated in Figure 1

taking the x4 case of BLAKE as an example; in

BLAKE2 the data paths remain identical and only

the input parameters of the compression function are

different (the salt is replaced with the initialization

flags) but this does not affect the considered

problem.

R3

R2

R1

R0

h||s||t m

512b

compress(h, s, t, m)

Figure 1. Creating the initial value of the state and

distributing the message bits to all the rounds in the

BLAKE compression function.

Handling the message words is additionally

complicated by permutations 0…9: in each round

a different permutation of mi is used so switching

between them requires supplementary multiplexers

controlled by the round counter. This aspect is

important and will be analysed later in this chapter.

3.3 The proposed application of memory

In order to address the above mentioned problem we

propose taking an advantage of block RAM

modules available in the FPGA chip which

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

123

constitute the implementation platform. The main

idea presented initially in [12] is to assign one such

module for each instance of the Gi function

implemented in hardware and keep the mi words

directly within, so that their involved dissemination

and multiplexing is avoided. Figure 2 compares

realization of the Gi function in a standard way

without RAM (left) and with the proposed extension

(right).

 vi m

512b

 G
i

64b

 G
i

 vi m

R
A

M

Mi

Figure 2. Distributing and multiplexing the message

bits for a Gi module in the standard implementations

(left) versus storing them in a dual-port RAM unit

assigned to the module (right).

Xilinx Spartan FPGA devices which are used in this

study offer as additional resources complementing

the programmable array so called block RAM

modules and these were used for the purpose of

message storage in the implementations. Each

module can store 16kb of data and can be

configured with different depth vs. width ratios – in

organizations from 16k x 1b to 512 x 32b. For our

application the last case – 512 x 32b – is a suitable

one with each mi word occupying exactly one

memory location. Additionally, the modules have

full dual port functionality, i.e. their contents can be

simultaneously accessible (both for reading as well

as for writing) through two equivalent ports. This

dual port feature is ideally suited to the needs of the

BLAKE distribution: one module can concurrently

read two different mi words in one clock cycle as

they are required for computation in one Gi

function, and the total number of modules can be

reduced by half compared to application of single-

port memories. Still, the number of utilized modules

is relatively high: every complete round in hardware

needs 8 RAM units so their final number in the

investigated architectures range from 8 (the case of

the x1 organization) to 40 (x5). These figures should

be compared to the total of 104 block RAM units

offered by the particular Spartan-3 chip selected in

this work for implementation tests. Also, utilization

of the RAM capacity is quite low: of the total 512

cells in each just 16 (1/32) are actually taken by the

complete message.

All the RAM modules must be loaded with the

message words before the actual computation

begins. This loading introduces obligatory

initialization phase which adds extra delay and in

some cases can remarkably slow down the total

execution time. Nevertheless, thanks to the dual port

interface two message words can be loaded in

parallel so the loading operation needs 8 clock

cycles and these cycles can be much shorter than the

ones required during actual computation (which

starts afterwards).

Further issues arise regarding memory

synchronization. The block RAM is a fully

synchronous module also in read operation, i.e.

when the read address is established the read data

appears on the outputs only after the clock edge.

This means that without appropriate compensation

in clock cycles when computing some particular

round number j the RAM outputs would present

message words for the previous round j – 1. In order

to solve this problem one void clock cycle is needed

to “precharge” RAM outputs. In BLAKE, where m

words are mixed with c constants, the counters used

for reading  permutations of m words need to be

one cycle ahead of those used for addressing the c

constants so the two sets of counters are needed. In

BLAKE2, as there is no need to address the c

constants, the counters do not need to be doubled.

All in all, together with the 8 clock cycles needed to

load message data to RAM modules the preliminary

phase adds in total 9 clock cycles before the actual

computation of the compression can start.

3.4 Evaluating memory size

In the following analysis let’s first concentrate on

the BLAKE variant of the algorithm.

Distribution of the message words which are needed

in particular Gi functions depends on the

 permutations and these are presented in Table 1

([1]). Any given hardware round instance Rj selects

r mod 10 for computation of round number r and this

specific permutation determines which mi words

will be loaded by its G functions according to the

table. Looking at the columns assigned to each Gi

instance and considering which round numbers will

be computed by the Rj (depending on the

architecture not all round numbers are computed in

all the Rj instances) we can find how many message

words will be needed in each Gi module – hence

what capacity of the associated memory module is

required.

Table 1. The  permutations and their elements

assigned to the instances of the G function.

 G0 G1 G2 G3 G4 G5 G6 G7
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3

Sugier Jarosław

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms

124

2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4

3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8

4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13

5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9

6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11

7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10

8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5

9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

Let’s i denote number of message words appearing

in equations (4) of specific Gi function and Mi – the

associated memory module. In the basic x1

architecture all the rounds are computed in the one

(and only) R0 module so all the permutations affect

the G instances contained within. Because not all

word indices appear in the first two columns of the

table which are assigned to the G0 instance (the

missing ones are 3 and 4) so the associated M0

module needs to store 0 = 14 words, without m3

and m4. Actually, most of the other modules in this

configuration must store 14 words, with the

exceptions of M4 (in those columns only index 3 is

omitted and 4 = 15) and M7 (7 = 13, without m6,

m7 and m12).

In the unrolled architectures the round instances

compute specific (and not all) rounds so the

reductions can be greater. In the extreme x5 case

each Rj instance uses just two permutations and

there are some G modules where they generate i =

3 (e.g. the R2 applies 2 and 7 and the G0 instance

inside this round receives m11, m8 in the first

permutation and m13, m11 in the second one).

The results of this kind of tedious evaluation (which

is not included here in completeness to preserve

space) of the i values in all the architectures are

presented in Table 2. For each round instance Rj in

every organization the second column lists the

permutations applied within (if the sequence returns

modulo 10 to beginning of the list the repeated

permutations are insignificant and are not listed), the

third one gives min-max range of the i values and

the fourth – total capacity of the Mi units. The last

two columns summarize memory for the whole

design (in all rounds): the fifth expresses the total

storage in a number of 32b words and the last one in

kilobits.

As it turns out, with increasing loop unrolling factor

k reductions in i can almost compensate the rise in

the total number of Mi modules: the x5 organization

needs only 40% more net storage than the x1 one

despite the fact that the number of the Mi modules

has increased from 8 to 40. This compensation is not

so effective in the x4 case because of the

irregularities in reductions of the permutations for

this particular unrolling factor (4 is not a divisor of

14).

In the BLAKE2 algorithm the reduction of nr from

14 to 10 changes these results only in the x4 case. In

x1, x2 and x5 the 4 extra rounds of the original

BLAKE return modulo to the beginning of the

permutation sequence so they do not add any new

message words to those already identified in the first

10 rounds . Only in the x4 case the BLAKE2

permutation sequences are actually shorter and the

total storage is reduced by a remarkable 27% as

compared to x4 in the BLAKE variant – and this is

the only new case added in the table.

As the final remark we should add that the above

evaluation estimates the RAM volumes as they can

be implemented in ASIC technologies. In the FPGA

implementations which are investigated in the rest

of this paper the storage had to be implemented with

the block RAM units of a constant (not

configurable) size, as it was already noted in the

previous subchapter, and one unit per G instance

must be used regardless of its actual occupancy.

Table 2. Memory required for storing the message

words in all four architectures.

Permu-

tations 0÷7

In

round

i i

Total

Rii

Total

[kb]

BLAKE

x1 R0
01…9 13 ÷

15
112 112 3.50

x2 R0 02…8 7 ÷ 10 69 142 4.44

 R1 13…9 8 ÷ 10 73

x4 R0 0482 5 ÷ 8 56 207 6.47

 R1 1593 6 ÷ 8 59

 R2 260 4 ÷ 6 45

 R3 371 5 ÷ 6 47

x5 R0 05 4 32 156 4.88

 R1 16 4 32

 R2 27 3 ÷ 4 31

 R3 38 3 ÷ 4 30

 R4 49 3 ÷ 4 31

BLAKE2

x4 R0 048 5 ÷ 6 45 150 4.69

 R1 159 4 ÷ 6 44

 R2 26 2 ÷ 4 30

 R3 37 3 ÷ 4 31

4. Results

4.1 Implementing the designs

Both versions of the cipher were implemented in all

four architectures in configurations where the main

hardware module computing the compression

function was equipped with some basic input /

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

125

output registers providing means for iterative

hashing of the message in 512b chunks. Then the

eight designs were automatically synthesized and

implemented by Xilinx ISE software with XST

synthesis tool for the Spartan-3 XC3S5000-5 device

([13]). The chip was selected because it was

sufficiently large to accommodate even the most

sized x5 organization. The same approach was

applied in our previous works on BLAKE ([10]-

[11]) so an already existing test platform was

uniformly extended to accommodate BLAKE2

version, keeping the ability to produce comparable

results.

The results obtained after implementation of the two

ciphers without and with RAM, in all 4

organizations – a total of 16 test cases – are

presented in Table 3. Speed aspect is represented in

the first column by the value of the minimum clock

period as it was estimated after static timing analysis

of the final, fully routed design. The two next

columns provide parameters which illustrate

effectiveness (or difficulties) of the implementation

process, i.e. how the complex logical

transformations of the algorithms were realized with

programmable resources of the array: for the longest

combinational path in the design the second column

gives number of logic elements it contains and the

fourth – percentage of the propagation delay

incurred by the routing resources (and not logic

elements). Any significant rise in the latter

parameter above 50-70% indicates problems with

routing of connections between logic elements of

the array. Size characteristics are reported in the last

two columns which give the total numbers of

utilized LUT generators and slices.

Table 3. Parameters of the BLAKE

implementations.

m
in

.
T

cl
k

[n
s]

L
ev

el
s

o
f

lo
g

ic

R
o

u
ti

n
g

d
el

ay

[%
]

S
iz

e:

L
U

T
s

S
iz

e:

S
li

ce
s

BLAKE RAM

x1 40.3 62 44.4 4961 2860

x2 83.6 100 57.1 8684 4894

x4 157.7 180 53.0 16142 8638

x5 197.3 229 53.3 20448 10913

BLAKE Std.

x1 45.7 66 50.6 9155 5415

x2 88.9 118 51.2 16928 10039

x4 189.7 203 58.7 32933 19000

x5 244.1 258 61.7 41923 23232

Table 4. Parameters of the BLAKE2

implementations.

m
in

.
T

cl
k

[n
s]

L
ev

el
s

o
f

lo
g

ic

R
o

u
ti

n
g

d
el

ay

[%
]

S
iz

e:

L
U

T
s

S
iz

e:

S
li

ce
s

BLAKE2 RAM

x1 40.0 66 41.3 3935 2353

x2 78.0 119 46.2 6863 3809

x4 151.9 219 47.6 12396 6576

x5 194.9 267 50.2 15426 8254

BLAKE2 Std.

x1 43.4 29 59.7 8370 4995

x2 86.7 85 58.7 15058 8620

x4 195.7 209 59.9 27906 16549

x5 246.7 250 61.1 34492 20065

The results of the standard BLAKE implementations

for comparison are cited from [11].

4.2 Size and speed effects of the proposed

RAM application

Based on the data from Tables 3 and 4 we can

compare size and speed of implementations

modified in a way proposed in this paper against the

results of the standard approach without RAM

utilization. Such a comparison is the purpose of

Figure 3: the minimum clock period Tclk (speed) and

the number of LUT generators (size) for

implementations with RAM are expressed as

percentages of corresponding values of standard (no

RAM) realizations – for all four organizations and

for both versions of the hash. As one can see, in all

cases the percentages are below the 100% level, i.e.

the RAM implementations were faster (shorter Tclk)

and smaller than their traditional counterparts.

Figure 3. Speed and size of the proposed RAM-

based implementations vs. standard results.

While it was obviously expected that moving part of

the logic from the FPGA array to the block RAM

should reduce LUT utilization, the actual scale of

40%

50%

60%

70%

80%

90%

100%

Tclk
LUT

Tclk
LUT

x1

x2

x4

x5

BLAKE2
BLAKE

Sugier Jarosław

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms

126

this reduction is outstanding: LUT numbers were

cut approximately by half, in the BLAKE

implementations on average to 51%, in BLAKE –

even to 45%. The scale of the improvement

indicates what burden was placed on the

implementation tools when the message words, 32b

each, are to be delivered and selected in

multiplexers twice in each Gi module: this task

alone took approximately half of the designs with

only rest of the resources busy with actual hashing

(which – as in any other cryptographic algorithm –

is a very complex job on its own).

The improvement, although not so stable across all

configurations, is seen also in performance

characteristic: while reading the message words

from the block RAMs does introduce some delay,

passing them through the distributed logic in the

standard architectures turned out to be even slower

so the overall clock period is reduced by 6 - 22%.

The average reduction is slightly better for the

BLAKE2 variant. Specific individuality is observed

in the case of the x2 design of BLAKE with the

RAM modification: in this particular configuration

the optimization procedures especially efficiently

reduced levels of logic but this was accompanied

with a disproportional increase in the routing part of

the longest path (the only case when an increase in

any parameter is observed) so the reduction in the

overall clock period is actually the smallest across

all the cipher/ architecture combinations.

In order to explain noticeably higher Tclk

percentages of the x1 and x2 architectures in the

BLAKE2 variant we must consider other parameters

from Tables 3 and 4. As they show, these two

version of the algorithm were treated differently by

the optimization procedures with regard to the

formation of the longest path. Figure 4 compares

number of logic levels and percentage of routing

delay in the RAM vs. standard implementations.

While in the original BLAKE the level of logic with

application of RAM was uniformly reduced approx.

by 11% and so the routing part of the delay (with

the abovementioned exception of the x2 case), in

BLAKE2 the optimization took a different path: in

the x1 and x2 cases it was better to increase the

number of logic levels in order to gain superior

reductions in routing delay. Nevertheless the overall

minimum clock period was shortened, albeit not so

efficiently as in the corresponding BLAKE

configurations. The x4 and x5 configurations were

optimized like in the BLAKE cases (comparable

reductions both in levels of logic and in routing

delay) and this led to better reductions in clock

period.

Figure 4. Parameters of the longest path in the

RAM-based implementations vs. standard results.

4.3 Scaling efficiency

Scalability in implementation of the loop unrolled

architectures is the ability to keep size and speed

efficiency in proportion to the number of rounds

instantiated in hardware. As the previous studies

have shown e.g. in [9] some contemporary

cryptographic algorithms may exhibit significant

weaknesses in this aspect, mainly due to their very

involved and irregular internal organisation which is

difficult to map to the FPGA array in larger (highly

unrolled) organizations. In order to consistently

evaluate scalability of the unrolling mechanism

among diversity of BLAKE variants and

organizations, the analysis presented in this point

was based on comparative relations rather than on

evaluation of absolute values of the parameters, in

a manner similar to the one applied already in [10].

In every cipher / organization combination the x1

architecture was taken as a point of reference and its

characteristics were used for estimation of size and

speed of the derived architectures in the following

way. The size of each unrolled architecture xk

should increase proportionally to the number of

rounds implemented in hardware (the unrolling

factor k) and we estimate

 Sizexk  Sizex1 · k (8)

Maximum frequency of operation – or the minimum

clock period – depends on the other hand on the

number of rounds the state must go through in one

clock cycle, i.e.:

 Tclkxk  Tclkx1 · k (9)

These two equations and the parameters of the x1

architectures in both algorithms were used for

calculating the estimated clock periods and numbers

of LUTs for the x2 - x5 cases and Figure 5 presents

the results as the ratios actual_value / estimation.

The lower the ratio, the faster (shorter Tclk) or the

50%

75%

100%

125%

150%

175%

200%

225%

250%

Lev.logic
Routing%

Lev.logic
Routing%

x1

x2

x4

x5

BLAKE2
BLAKE

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

127

smaller (lower number of LUT) was the actual

design in comparison to what could be expected

from its x1 case. The value of 100% is the threshold

separating “better than” (<100%) from “worse than”

(>100%) the expected.

Considering the speed aspect (Tclk value) first, it

should be noted that only RAM-based architectures

behave close to the expectations for the both cipher

variants and their deviations from the estimated

values are within ±5% margin, while the standard

implementations in most of the cases are noticeably

worse than estimations. What’s more, deeper

problems are exhibited in the BLAKE2 version

despite its much reduced size: the x4 and x5 cases

are by 13-14% slower than expected (in BLAKE –

by 4-7%) and these are the worst results across all

the cases. This suggests that advantages brought by

RAM application are more important for

implementation efficiency than the BLAKE2

simplifications.

When looking at changes in speed scaling which

were brought by the proposed RAM application one

can see that they are almost always positive i.e. the

ratios are smaller in the RAM versions than in their

standard counterparts, with an only exception of the

x2 case in the BLAKE version. This is also the only

situation when the standard implementation behaves

better than expected and the RAM-based worse –

again an indication of singularity of this particular

case as it was already noticed in the first analysis of

this chapter.

Figure 5. Parameters of the unrolled architectures as

percentages of the estimations based on the x1 case.

Effects of the scaling in size are more consistent and

always positive: in all the 12 unrolled cases the

architectures are always smaller than estimations

and the decreases are evidently bigger than those in

the Tclk evaluation. The best reductions by up to 13-

23% are noted for RAM-based BLAKE2 cases and

the smallest – for BLAKE implemented in the

standard way (up to 8-10%) but variety across all

the combinations is not as wide as it was in the

speed parameter. It is worth noting that again the

reductions are better in the proposed RAM versions

than in their standard counterparts, this time without

a single exception.

4.4 BLAKE2 versus BLAKE

In the last analysis we will compare parameters of

the two versions of the algorithm, again looking at

the the ratios of respective parameters between the

two versions of the cipher, implemented in a

standard way and with memory (Figure 6).

As it was already remarked in chapter 2.2, BLAKE2

slightly simplifies processing of the G function by

removing xor operations which use sixteen 32-bit

constant words. It is reasonable that the resultant

proportional reductions in LUT numbers are bigger

in RAM implementations (down to 75-79%) than in

the standard ones (to 82-91%) because in those

cases the removed hardware reduces smaller

designs. Still it is worth noting that this relatively

minor amendment in the equations can have

remarkable influence on size, reducing LUT

utilization in the x5 RAM case by ¼. In the standard

implementations, on the other hand, this effect

scales with the unrolling factor more intensively

than in the RAM ones.

Figure 6. Parameters of BLAKE2 vs. BLAKE

implementations.

The situation is not so consistent in the Tclk

parameter. First of all, the two standard cases x4 and

x5 are slower in the BLAKE2 version than in the

original BLAKE one. Although their clock periods

increased by a small margin (+3 and +1%), it is

against the general trend that smaller designs (with

75%

85%

95%

105%

115%

125%

Tclk Std. Tclk RAM LUT Std. LUT RAM

x
2

x
4

BLAKE

75%

85%

95%

105%

115%

125%

Tclk Std. Tclk RAM LUT Std. LUT RAM

x
2

x
4

BLAKE2

70%

80%

90%

100%

110%

Tclk
LUT

Tclk
LUT

x1

x2

x4

x5

Std.
RAM

Sugier Jarosław

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms

128

shorter paths) are faster and this indicates some

problems in automatic routing. This situation was

improved by applying RAM: all the cases were

faster in the BLAKE2 version but the progress

(reductions down to 93-99%) are far from the ones

observed in the numbers of LUT elements. With the

only exception of the x1 case, the reductions in the

Tclk period were better in RAM versions than in the

equivalent standard ones.

5. Conclusions

In this paper we have discussed a modification in

hardware implementations of the BLAKE and

BLAKE2 hash algorithms which, by using block

memory units provided as auxiliary FPGA

resources, eliminated the need for involved data

paths distributing message bits among the round

modules. These path are specific peculiarity of this

algorithm and are not needed neither in KECCAK

(the new SHA-3 standard) nor in ChaCha (upon

which the BLAKE processing was constructed). The

idea was implemented in realizations of both

BLAKE and BLAKE2 versions of the cipher in 4

different organizations: the standard iterative one

and three high-speed loop-unrolled architectures

with 2, 4 and 5 rounds instantiated in hardware.

Together with standard (without RAM)

implementations used for comparison this produced

a total of 16 test cases considered in this paper: after

implementation in a popular Spartan-3 device from

Xilinx their parameters allowed for exhaustive

evaluation of the proposed modification.

The results reveal that the modification

outstandingly enhanced size of all the tested

architectures: on average, occupation of the FPGA

array was reduced at least by half. The

improvements in speed, although not so spectacular,

are also visible, in case of some unrolled

architectures by up to 1/5. Additional analyses

indicated that the proposed modification can

improve overall efficiency of routing, helps in

generation of the loop-unrolled architectures and

strengthens optimizations introduced in the

BLAKE2 version of the algorithm.

Whether these improvements compensate the extra

cost of memory blocks introduced to the design

remains an open issue. In ASIC designs the amount

of extra memory needed for repetitive storage of the

message inside each round instance ranges from

3.5kb in the standard iterative architecture to 5 –

6.5kb in the unrolled organizations for the cases

when 4 or 5 rounds are realized in hardware. In the

FPGA engineering practice, though, it is common

that the design fitted in the device does not use all

RAM resources and we have shown that in such

situations, if there remain some free memory blocks

in the chip, using such “leftovers” for improvements

in BLAKE / BLAKE2 implementation is definitely

an option worth consideration.

References

[1] Aumasson, J.-P., Henzen, L., Meier, W. & Phan,

R.C.-W. (2010). SHA-3 proposal BLAKE,

version 1.3.

https://www.131002.net/blake/blake.pdf;

accessed: March 2017.

[2] Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z.,

& Winnerlein, C. (2013). BLAKE2: simpler,

smaller, fast as MD5. Jacobson M., Locasto M.,

Mohassel P., Safavi-Naini R. (eds) Applied

Cryptography and Network Security ACNS 2013.

Springer LNCS, 7954, 119-135.

[3] Bernstein, D.J. (2008). ChaCha, a variant of

Salsa20 http://cr.yp.to/chacha/chacha-20080128

.pdf; accessed: March 2017.

[4] Bernstein, D.J. (2008). The Salsa20 Family of

Stream Ciphers. Robshaw M., Billet O. (eds)

New Stream Cipher Designs. Springer LNCS

4986.

[5] Dunkelman, O., & Biham, E. (2006). A

framework for iterative hash functions: Haifa.

2nd NIST Cryptographich Hash Workshop, 22.

[6] Gaj, K., Homsirikamol, E., Rogawski, M.,

Shahid, R. & Sharif, M. U. (2012).

Comprehensive evaluation of high-speed and

medium-speed implementations of five SHA-3

finalists using Xilinx and Altera FPGAs. The

Third SHA-3 Candidate Conference,

Washington, DC, USA.

[7] Gaj, K., Southern, G., & Bachimanchi, R.

(2007). Comparison of hardware performance of

selected Phase II eSTREAM candidates. Proc.

State of the Art of Stream Ciphers Workshop,

eSTREAM, ECRYPT Stream Cipher Project,

Report, 26, p. 2007.

[8] Junkg, B. & Apfelbeck, J. (2011). Area-efficient

FPGA implementations of the SHA-3 finalists.

2011 International Conference on

Reconfigurable Computing and FPGAs

(ReConFig), IEEE, 235-241.

[9] Sugier, J. (2015). Popular FPGA Device

Families in Implementation of Cryptographic

Algorithms. Zamojski, W., Mazurkiewicz, J.,

Sugier, J., Walkowiak, T., Kacprzyk, J. (eds.)

Theory and Engineering of Complex Systems and

Dependability. Proc. 11th Int. Conf.

Dependability and Complex Systems DepCoS-

RELCOMEX. Springer AISC, 365, 485-495.

[10] Sugier, J. (2016). Implementation Efficiency of

BLAKE and Other Contemporary Hash

Algorithms in Popular FPGA Devices. Zamojski,

W., Mazurkiewicz, J., Sugier, J., Walkowiak, T.,

Journal of Polish Safety and Reliability Association

Summer Safety and Reliability Seminars, Volume 8, Number 1, 2017

129

Kacprzyk, J. (eds.) Proc. 11th Int. Conf.

Dependability and Complex Systems DepCoS-

RELCOMEX. Springer AISC, 470, 457-467.

[11] Sugier, J. (2016). Implementing SHA-3

candidate BLAKE algorithm in Field

Programmable Gate Arrays. J. Polish Safety and

Reliability Association, 7(1), 193-200.

[12] Sugier, J. (2017). Simplifying FPGA

Implementations of BLAKE Hash Algorithm

with Block Memory Resources. Procedia

Engineering, 178, 33-41.

[13] Xilinx, Inc. (2009). Spartan-3 Family Data Sheet.

www.xilinx.com (ds099.pdf); accessed: March

2017.

