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Abstract 

In contemporary computer systems security issues are very important for both safety and reliability reasons thus 

application of appropriate cryptographic methods is a necessity in system design and maintenance. This paper 

deals with one such method – BLAKE hash function – and investigates its implementation in hardware. The 

algorithm was a candidate proposed for the SHA-3 contest and, although it was not selected in the final round as 

the winner, it was very well received for its cryptographic strength and performance, being still used as a hash 

method of choice in contemporary IT systems. In this paper we discuss a specific modification in hardware 

realizations of the function which eliminates need for involved data paths distributing message bits among the 

round units by using auxiliary memory modules for repetitive storage of the message inside each round instance. 

The idea was implemented in realizations of both BLAKE and BLAKE2 versions of the algorithm in 

four different organizations: the standard iterative one and three high-speed loop-unrolled architectures with 2, 4 

and 5 rounds instantiated in hardware. Together with standard (without RAM) implementations this produced 

a total of 16 test cases: after implementation in a popular Spartan-3 device from Xilinx their parameters allowed 

for exhaustive evaluation of the proposed modification. The results reveal that the modification outstandingly 

enhances size of all the tested architectures: on average, occupation of the FPGA array is reduced at least by half 

while the improvements in speed, although not so spectacular, are also visible. Additional analyses indicate that 

the method can also increase overall efficiency of routing, helps in implementation of the loop-unrolled 

architectures and strengthens optimizations introduced by the BLAKE2 version of the algorithm. 

 

1. Introduction 

Although BLAKE eventually lost to Keccak in the 

SHA-3 competition the cipher is still often selected 

as a hash function of choice in contemporary data 

processing systems due to its excellent 

cryptographic strength and high efficiency in 

software. Potential of its hardware implementations, 

like of any other SHA-3 candidate, was extensively 

studied e.g. in [6]-[8]. In this paper we focus on one 

particular aspect of BLAKE hardware realizations, 

dealing with challenges caused by its specific 

peculiarity: the need of involved distribution of 

message bits among cipher rounds. Implementation 

of this distribution is much more cumbersome in 

hardware than in software and its elimination can 

significantly reduce FPGA utilization and improve 

overall performance. The proposed idea consists in 

replacing the distribution with repetitive storage of 

the message in RAM modules located within every 

round instance. In the paper we test this solution in 

4 different architectures of the cipher: the standard 

iterative one and three loop-unrolled organizations 

with 2, 4 and 5 rounds instantiated in hardware, for 

both BLAKE and BLAKE2 variants. The results 

found after their implementation in popular Spartan-

3 devices from Xilinx are compared to parameters 

of analogous architectures implemented without 

memory so that the savings in array utilization can 

be measured against supplementary cost of occupied 

block RAM modules. 

The first results investigating potential of the 

proposed idea were presented in [12]. In this work 

we extend them by adding the BLAKE2 variant of 

the algorithm and by introducing exact evaluation of 

the required memory capacity which is crucial in 

ASIC (non-FPGA) implementations. 
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The contents of the paper is organized as follows. 

After introducing the family of BLAKE hash 

functions in the next section, in chapter 3 we present 

standard iterative and loop unrolled architectures 

used for its implementation, describe the proposed 

method of RAM application and evaluate required 

capacity of memory resources needed for its 

realization. Then in chapter 4 we discuss the results 

obtained after implementation of the modified 

architectures and evaluate them against known 

parameters of the analogous organizations without 

the modification. The analyses include direct 

comparison of the architectures before and after the 

modification as well as its influence on the 

efficiency of the loop unrolling mechanism and on 

optimizations introduced in the BLAKE2 version of 

the algorithm. 

2. The family of BLAKE algorithms 

In this study we are considering those size variants 

of the BLAKE algorithms which generate 256b hash 

output, internally handling 32b words and 512b 

state: BLAKE-256 and BLAKE2s. 

2.1 BLAKE 

In BLAKE-256 ([1]) the plaintext message m of 

length l < 2
64

 bits is first padded with string 

“10…01|l|64” in such a way that its total bit length is 

a multiple of 512 (where |l|64 denotes 64-bit 

unsigned big-endian representation of the length l). 

Then the padded message is split into 512b blocks 

m
0
…m

N-1
 and the hash output h(m) is iteratively 

computed according to the HAIFA iteration scheme 

[5]: 

 

h
0
 := IV 

for i = 0 ... N − 1 

   h
i+1
 := compress( h

i
, s, t

i
, m

i
 ) 

return h
N
 

 

The upper indices 
i
 will symbolize ordinal number 

of the message block and the lower ones – indices of 

the internal words inside the compression function; 

moreover, IV is a constant pattern initializing the 

hash chain value h
0
 (adopted from the SHA-2 

standard), s represents a salt (a 128b auxiliary free 

parameter provided for randomized hashing 

required e.g. in digital signature schemes), and t
i
 – 

a 64b counter giving a number of message bits 

hashed so far. 

Like in other hash algorithms based on Merkle-

Damgård construction, processing of a free-length 

message stream consists in repetitive application of 

a compression function compress() on one message 

block m
i
. Its implementation is the actual challenge 

in realization of the algorithm. For definition of the 

function the specification introduces 16 constant 

words c0…c15 and ten 16-element permutations 

0…9 used for reordering message and constant 

words in the computations. 

Internal processing of the compression is organized 

around a state - a 4x4 matrix of words v0… v15, and 

is executed as follows. Initially the state is filled 

with the current chain hash value h
i
, the salt and the 

counter (but not with the m
i
 bits!), partially xor’ed 

with the c0…c7 constants: 
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 (1) 

 

Then it goes through nr = 14 rounds with each round 

modifying twice all the words by applying a G 

function: 

 

   G0(v0, v4, v8, v12);    G1(v1, v5, v9, v13); 

   G2(v2, v6, v10, v14);   G3(v3, v7, v11, v15); 
(2) 

 

and then 

 

   G4(v0, v5, v10, v15);   G5(v1, v6, v11, v12); 

   G6(v2, v7, v8, v13);    G7(v3, v4, v9, v14). 
(3) 

 

Each Gi() function call transforms a set of four 

v words given as explicit parameters; as an 

additional side input the message words are also 

loaded although they do not appear on the argument 

list. The ordinal function number i = 0 ÷ 7 

determines which permutation, message and 

constant words are used within each specific Gi() 

instance so that all 16 message words and constants 

take part in each round. The first set of the functions 

in eq. (2) operate on words from column of the 

matrix, while the second in eq. (3) – on words from 

diagonals, and this corresponds to column and row 

rounds in ChaCha algorithm where the G function 

itself is called a quarterround ([3]-[4]). 

The function Gi(a, b, c, d) of a round number r  (0 ÷ 

13) is defined as a sequence of the following 

operations: 

 

   a := a + b + ( mr' (2i)  c r' (2i + 1) ) 

   d := ( d  a ) >> 16 

   c := c + d 

(4) 
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   b := ( b  c ) >> 12 

   a := a + b + ( mr' (2i + 1)  cr' (2i) ) 

   d := ( d  a ) >> 8 

   c := c + d 

   b := ( b  c ) >> 7 

 

where r' = r mod 10 (number of the  permutations 

is limited to 10) and the operators denote the 

following transformations of the words: 

  - bitwise xor of two bit vectors, 

+  - addition mod 2
32

 of two bit vectors (i.e. regular 

32b addition with carry out ignored), 

>>  - right rotation by a constant number of 

positions. 

After 14 iterations, the state produced by the last 

round is xor’ed with the input h
i
 and the salt s to 

give the return value of h
i+1

: 

 

   h
i+1

  :=  hi  si mod 4  vi  vi + 8,    i = 0 … 7. (5) 

2.2 BLAKE2 

Extensive tests and cryptanalyses during the SHA-3 

contest proved that the original BLAKE proposal 

offered a very large security margin. In 2013 the 

authors, based upon experience gathered after the  

public evaluation, proposed an improved version of 

the method – called BLAKE2 – with modifications 

aimed mainly towards its simplification and 

optimization ([2]). In a brief summary the following 

changes were introduced (the 256-bit version of the 

algorithm is considered): 

• number of rounds was reduced from 14 to 10; 

• message padding was simplified and its 

functionality was partially replaced with finalization 

flags f0 and f1 which signal the last message block 

and the last node in tree hashing; 

• initialization of the h
0
 chain value was extended 

with parameter block (which includes, among 

others, the salt and the finalization flags); 

• the state initialization (eq. 1) was changed into: 
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• the salt was removed from argument list of the 

compression function and was kept exclusively for 

the h
0
 initialization; 

• definition of the G function was simplified as: 

 

   a := a + b + mr(2i) 

   d := ( d  a ) >> 16 

   c := c + d 

   b := ( b  c ) >> 12 

   a := a + b + mr(2i + 1) 

   d := ( d  a ) >> 8 

   c := c + d 

   b := ( b  c ) >> 7, 

(7) 

 

The constants c were dropped altogether from the 

specification and they are not used neither in (6) nor 

in (7). Also, because the number of rounds has been 

cut to 10, there is no need to introduce r’ in (7) as 

the round number modulo 10. 

For efficiency of hardware implementations 

investigated in this paper most of the above changes 

are of little significance: resources needed for both 

the h
0
 and state initializations are negligible when 

compared to the hardware representing the actual 

compression executed in the eight instances of the 

G functions. Also the reduction in the number of 

rounds, while obviously cutting the number of clock 

cycles needed for completion of the computation, 

can be done with trivial adjustments in the control 

unit. Nevertheless, removing the c constants indeed 

to some extent simplifies hardware realization of the 

G function: keeping a total of 16 words, each 32b 

wide, in multiple ROM modules and multiplexing 

them on the two inputs of each G instance is the 

primary difference between the hardware of 

BLAKE and BLAKE2 realizations – although it is a 

relatively minor one looking on complexity of the 

remaining parts in equations (7). 

3. Implementing the algorithms in hardware 

3.1 The loop unrolling mechanism 

Processing scheme of the BLAKE algorithms is 

typical to any round-based cipher and it can be 

efficiently implemented in software in a CPU-based 

system in an iterative manner: operations of a single 

round are expressed in the code once and then 

applied to the state variables vi repeatedly in a loop 

nr times. When transferring the algorithm to 

hardware (either ASIC or FPGA) the designer is 

facing a larger diversity of feasible implementation 

options. In general, there are two opposite extreme 

approaches: the iterative loop of the cipher can be 

completely unrolled with all the rounds replicated in 

hardware as a cascade of nr modules, or the loop is 

not unrolled at all with just one round module 

implemented in hardware and its operation on state 

signals is repeated nr times (that is, in nr clock 
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cycles) in a manner resembling software iterations. 

Furthermore, as a mid-range solution the loop can 

be unrolled in part: one fourth, for example, of the 

rounds can be reproduced in hardware and the state 

signals are passed through them four times. In this 

paper, after universal taxonomy presented e.g. by 

Gaj et al. ([6]), an architecture with k unrolled 

rounds will be denoted as xk while the basic 

iterative one – as x1. 

In this study we focus on high speed organizations 

and the test suite consisted of the following 4 

organizations: 

• x1: the basic iterative architecture with one round 

implemented in hardware and the state being passed 

though it repeatedly in 14 (BLAKE) or 10 

(BLAKE2) clock cycles (i.e. each complete round is 

computed in one clock tick); 

• x2: modification of the above with a combinational 

cascade of two rounds implemented in hardware 

with total computation done in 7 or 5 clock cycles 

(with each clock tick the state is propagated through 

two rounds); 

• x4: the cascade is built from 4 rounds and 4 or 3 

clock cycles are required for complete computation 

(the final result is taken from the second round in 

the cascade to get nr = 14 = 3 × 4 + 2 or 10 = 2 × 4 + 

2); 

• x5: as in the previous case but with 5 rounds 

unrolled in hardware; in BLAKE 3 clock cycles are 

needed for complete computation (the final result is 

taken from the fourth round in the cascade to get 14 

= 2 × 5 + 4) while in BLAKE2 the computation 

takes 2 cycles and the result is taken from the last 

round. 

3.2 Peculiarities of message distribution 

Although BLAKE followed the rules of in-round 

processing of ChaCha cipher ([3]), it introduced 

significantly different distribution of the message 

bits among the rounds. In ChaCha and in majority of 

other hash functions (including SHA-3 winner 

KECCAK) the message bits which enter the 

compression are routed only to the input to the first 

cipher round in parallel with other data like salt, 

counter or nonce, forming the initial value of the 

state. That is, the message bits enter only beginning 

of the round cascade and are not propagated to each 

round separately: after creating the initial state the 

message bits are not utilized afterwards. BLAKE 

uses a different approach: instead of being loaded at 

the input of the round cascade, the message words 

are sent to each of the Gi functions (two words per 

function) as the equations from the set (4) or (7) 

illustrate.  

The authors consider this change as a relatively 

minor extension of the ChaCha processing scheme. 

Indeed, it may be so in software implementation: 

even if each G function operates in a separate thread 

of CPU execution, extra reads of RAM locations 

which store the message words do not alter the 

overall arrangement of data handling and just adds 

another operations to the sequence of already 

running ones. In hardware, though, this means that 

the message bits must be provided separately to 

each Gi instance since they take part in the 

computations throughout all the iterations and not 

only in their initialization phase. This leads to 

creation of a completely new, 512b wide data path 

which has not been needed neither in ChaCha, 

Salsa20 nor in Keccak as we have analysed in our 

previous works ([9]-[10]). In effect this doubles 

total width of the data path running along the round 

cascade from 512b (the state) to 1024b (the state 

plus the message bits). This is illustrated in Figure 1 

taking the x4 case of BLAKE as an example; in 

BLAKE2 the data paths remain identical and only 

the input parameters of the compression function are 

different (the salt is replaced with the initialization 

flags) but this does not affect the considered 

problem. 

 
 

R3 

 

R2 

 

R1 

 

R0 

h||s||t m 

512b 

compress( h, s, t, m ) 

 

Figure 1. Creating the initial value of the state and 

distributing the message bits to all the rounds in the 

BLAKE compression function. 

 

Handling the message words is additionally 

complicated by permutations 0…9: in each round 

a different permutation of mi is used so switching 

between them requires supplementary multiplexers 

controlled by the round counter. This aspect is 

important and  will be analysed later in this chapter. 

3.3 The proposed application of memory 

In order to address the above mentioned problem we 

propose taking an advantage of block RAM 

modules available in the FPGA chip which 
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constitute the implementation platform. The main 

idea presented initially in [12] is to assign one such 

module for each instance of the Gi function 

implemented in hardware and keep the mi words 

directly within, so that their involved dissemination 

and multiplexing is avoided. Figure 2 compares 

realization of the Gi function in a standard way 

without RAM (left) and with the proposed extension 

(right). 

 

  vi m 

512b 

 G
i 

     

 
64b 

 G
i 

 vi m 

R
A

M
 

Mi 

 

Figure 2. Distributing and multiplexing the message 

bits for a Gi module in the standard implementations 

(left) versus storing them in a dual-port RAM unit 

assigned to the module (right). 

Xilinx Spartan FPGA devices which are used in this 

study offer as additional resources complementing 

the programmable array so called block RAM 

modules and these were used for the purpose of 

message storage in the implementations. Each 

module can store 16kb of data and can be 

configured with different depth vs. width ratios – in 

organizations from 16k x 1b to 512 x 32b. For our 

application the last case – 512 x 32b – is a suitable 

one with each mi word occupying exactly one 

memory location. Additionally, the modules have 

full dual port functionality, i.e. their contents can be 

simultaneously accessible (both for reading as well 

as for writing) through two equivalent ports. This 

dual port feature is ideally suited to the needs of the 

BLAKE distribution: one module can concurrently 

read two different mi words in one clock cycle as 

they are required for computation in one Gi 

function, and the total number of modules can be 

reduced by half compared to application of single-

port memories. Still, the number of utilized modules 

is relatively high: every complete round in hardware 

needs 8 RAM units so their final number in the 

investigated architectures range from 8 (the case of 

the x1 organization) to 40 (x5). These figures should 

be compared to the total of 104 block RAM units 

offered by the particular Spartan-3 chip selected in 

this work for implementation tests. Also, utilization 

of the RAM capacity is quite low: of the total 512 

cells in each just 16 (1/32) are actually taken by the 

complete message. 

All the RAM modules must be loaded with the 

message words before the actual computation 

begins. This loading introduces obligatory 

initialization phase which adds extra delay and in 

some cases can remarkably slow down the total 

execution time. Nevertheless, thanks to the dual port 

interface two message words can be loaded in 

parallel so the loading operation needs 8 clock 

cycles and these cycles can be much shorter than the 

ones required during actual computation (which 

starts afterwards). 

Further issues arise regarding memory 

synchronization. The block RAM is a fully 

synchronous module also in read operation, i.e. 

when the read address is established the read data 

appears on the outputs only after the clock edge. 

This means that without appropriate compensation 

in clock cycles when computing some particular 

round number j the RAM outputs would present 

message words for the previous round j – 1. In order 

to solve this problem one void clock cycle is needed 

to “precharge” RAM outputs. In BLAKE, where m 

words are mixed with c constants, the counters used 

for reading  permutations of m words need to be 

one cycle ahead of those used for addressing the c 

constants so the two sets of counters are needed. In 

BLAKE2, as there is no need to address the c 

constants, the counters do not need to be doubled. 

All in all, together with the 8 clock cycles needed to 

load message data to RAM modules the preliminary 

phase adds in total 9 clock cycles before the actual 

computation of the compression can start. 

3.4 Evaluating memory size 

In the following analysis let’s first concentrate on 

the BLAKE variant of the algorithm. 

Distribution of the message words which are needed 

in particular Gi functions depends on the 

 permutations and these are presented in Table 1 

([1]). Any given hardware round instance Rj selects 

r mod 10 for computation of round number r and this 

specific permutation determines which mi words 

will be loaded by its G functions according to the 

table. Looking at the columns assigned to each Gi 

instance and considering which round numbers will 

be computed by the Rj (depending on the 

architecture not all round numbers are computed in 

all the Rj instances) we can find how many message 

words will be needed in each Gi module – hence 

what capacity of the associated memory module is 

required. 

 

Table 1. The  permutations and their elements 

assigned to the instances of the G function. 

 G0 G1 G2 G3 G4 G5 G6 G7 
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 
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2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 

3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 

4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 

5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 

6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 

7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 

8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 

9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 

 

Let’s i denote number of message words appearing 

in equations (4) of specific Gi function and Mi – the 

associated memory module. In the basic x1 

architecture all the rounds are computed in the one 

(and only) R0 module so all the permutations affect 

the G instances contained within. Because not all 

word indices appear in the first two columns of the 

table which are assigned to the G0 instance (the 

missing ones are 3 and 4) so the associated M0 

module needs to store 0 = 14 words, without m3 

and m4. Actually, most of the other modules in this 

configuration must store 14 words, with the 

exceptions of M4 (in those columns only index 3 is 

omitted and 4 = 15) and M7 (7 = 13, without m6, 

m7 and m12). 

In the unrolled architectures the round instances 

compute specific (and not all) rounds so the 

reductions can be greater. In the extreme x5 case 

each Rj instance uses just two permutations and 

there are some G modules where they generate i = 

3 (e.g. the R2 applies 2 and 7 and the G0 instance 

inside this round receives m11, m8 in the first 

permutation and m13, m11 in the second one). 

The results of this kind of tedious evaluation (which 

is not included here in completeness to preserve 

space) of the i values in all the architectures are 

presented in Table 2. For each round instance Rj in 

every organization the second column lists the 

permutations applied within (if the sequence returns 

modulo 10 to beginning of the list the repeated 

permutations are insignificant and are not listed), the 

third one gives min-max range of the i values and 

the fourth – total capacity of the Mi units. The last 

two columns summarize memory for the whole 

design (in all rounds): the fifth expresses the total 

storage in a number of 32b words and the last one in 

kilobits. 

As it turns out, with increasing loop unrolling factor 

k reductions in i can almost compensate the rise in 

the total number of Mi modules: the x5 organization 

needs only 40% more net storage than the x1 one 

despite the fact that the number of the Mi modules 

has increased from 8 to 40. This compensation is not 

so effective in the x4 case because of the 

irregularities in reductions of the permutations for 

this particular unrolling factor (4 is not a divisor of 

14). 

In the BLAKE2 algorithm the reduction of nr from 

14 to 10 changes these results only in the x4 case. In 

x1, x2 and x5 the 4 extra rounds of the original 

BLAKE return modulo to the beginning of the 

permutation sequence so they do not add any new 

message words to those already identified in the first 

10 rounds . Only in the x4 case the BLAKE2 

permutation sequences are actually shorter and the 

total storage is reduced by a remarkable 27% as 

compared to x4 in the BLAKE variant – and this is 

the only new case added in the table. 

As the final remark we should add that the above 

evaluation estimates the RAM volumes as they can 

be implemented in ASIC technologies. In the FPGA 

implementations which are investigated in the rest 

of this paper the storage had to be implemented with 

the block RAM units of a constant (not 

configurable) size, as it was already noted in the 

previous subchapter, and one unit per G instance 

must be used regardless of its actual occupancy. 

 

Table 2. Memory required for storing the message 

words in all four architectures. 

 

Permu-

tations 0÷7 

In 

round 

i i 

Total 

Rii 

Total 

[kb] 

BLAKE 

x1 R0 
01…9 13 ÷ 

15 
112 112 3.50 

x2 R0 02…8 7 ÷ 10 69 142 4.44 

 R1 13…9 8 ÷ 10 73   

x4 R0 0482 5 ÷ 8 56 207 6.47 

 R1 1593 6 ÷ 8 59   

 R2 260 4 ÷ 6 45   

 R3 371 5 ÷ 6 47   

x5 R0 05 4 32 156 4.88 

 R1 16 4 32   

 R2 27 3 ÷ 4 31   

 R3 38 3 ÷ 4 30   

 R4 49 3 ÷ 4 31   

BLAKE2 

x4 R0 048 5 ÷ 6 45 150 4.69 

 R1 159 4 ÷ 6 44   

 R2 26 2 ÷ 4 30   

 R3 37 3 ÷ 4 31   

4. Results 

4.1 Implementing the designs 

Both versions of the cipher were implemented in all 

four architectures in configurations where the main 

hardware module computing the compression 

function was equipped with some basic input / 
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output registers providing means for iterative 

hashing of the message in 512b chunks. Then the 

eight designs were automatically synthesized and 

implemented by Xilinx ISE software with XST 

synthesis tool for the Spartan-3 XC3S5000-5 device 

([13]). The chip was selected because it was 

sufficiently large to accommodate even the most 

sized x5 organization. The same approach was 

applied in our previous works on BLAKE ([10]-

[11]) so an already existing test platform was 

uniformly extended to accommodate  BLAKE2 

version, keeping the ability to produce comparable 

results. 

The results obtained after implementation of the two 

ciphers without and with RAM, in all 4 

organizations – a total of 16 test cases – are 

presented in Table 3. Speed aspect is represented in 

the first column by the value of the minimum clock 

period as it was estimated after static timing analysis 

of the final, fully routed design. The two next 

columns provide parameters which illustrate 

effectiveness (or difficulties) of the implementation 

process, i.e. how the complex logical 

transformations of the algorithms were realized with 

programmable resources of the array: for the longest 

combinational path in the design the second column 

gives number of logic elements it contains and the 

fourth – percentage of the propagation delay 

incurred by the routing resources (and not logic 

elements). Any significant rise in the latter 

parameter above 50-70% indicates problems with 

routing of connections between logic elements of 

the array. Size characteristics are reported in the last 

two columns which give the total numbers of 

utilized LUT generators and slices. 

 

Table 3. Parameters of the BLAKE 

implementations. 
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BLAKE RAM 

x1 40.3 62 44.4 4961 2860 

x2 83.6 100 57.1 8684 4894 

x4 157.7 180 53.0 16142 8638 

x5 197.3 229 53.3 20448 10913 

 
BLAKE Std. 

x1 45.7 66 50.6 9155 5415 

x2 88.9 118 51.2 16928 10039 

x4 189.7 203 58.7 32933 19000 

x5 244.1 258 61.7 41923 23232 

 

 

Table 4. Parameters of the BLAKE2 

implementations. 
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BLAKE2 RAM 

x1 40.0 66 41.3 3935 2353 

x2 78.0 119 46.2 6863 3809 

x4 151.9 219 47.6 12396 6576 

x5 194.9 267 50.2 15426 8254 

 
BLAKE2 Std. 

x1 43.4 29 59.7 8370 4995 

x2 86.7 85 58.7 15058 8620 

x4 195.7 209 59.9 27906 16549 

x5 246.7 250 61.1 34492 20065 

 

The results of the standard BLAKE implementations 

for comparison are cited from [11]. 

4.2 Size and speed effects of the proposed 

RAM application 

Based on the data from Tables 3 and 4 we can 

compare size and speed of implementations 

modified in a way proposed in this paper against the 

results of the standard approach without RAM 

utilization. Such a comparison is the purpose of 

Figure 3: the minimum clock period Tclk (speed) and 

the number of LUT generators (size) for 

implementations with RAM are expressed as 

percentages of corresponding values of standard (no 

RAM) realizations – for all four organizations and 

for both versions of the hash. As one can see, in all 

cases the percentages are below the 100% level, i.e. 

the RAM implementations were faster (shorter Tclk) 

and smaller than their traditional counterparts. 

 

 
Figure 3. Speed and size of the proposed RAM-

based implementations vs. standard results. 
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this reduction is outstanding: LUT numbers were 

cut approximately by half, in the BLAKE 

implementations on average to 51%, in BLAKE – 

even to 45%. The scale of the improvement 

indicates what burden was placed on the 

implementation tools when the message words, 32b 

each, are to be delivered and selected in 

multiplexers twice in each Gi module: this task 

alone took approximately half of the designs with 

only rest of the resources busy with actual hashing 

(which – as in any other cryptographic algorithm –  

is a very complex job on its own). 

The improvement, although not so stable across all 

configurations, is seen also in performance 

characteristic: while reading the message words 

from the block RAMs does introduce some delay, 

passing them through the distributed logic in the 

standard architectures turned out to be even slower 

so the overall clock period is reduced by 6 - 22%. 

The average reduction is slightly better for the 

BLAKE2 variant. Specific individuality is observed 

in the case of the x2 design of BLAKE with the 

RAM modification: in this particular configuration 

the optimization procedures especially efficiently 

reduced levels of logic but this was accompanied 

with a disproportional increase in the routing part of 

the longest path (the only case when an increase in 

any parameter is observed) so the reduction in the 

overall clock period is actually the smallest across 

all the cipher/ architecture combinations. 

In order to explain noticeably higher Tclk 

percentages of the x1 and x2 architectures in the 

BLAKE2 variant we must consider other parameters 

from Tables 3 and 4. As they show, these two 

version of the algorithm were treated differently by 

the optimization procedures with regard to the 

formation of the longest path. Figure 4 compares 

number of logic levels and percentage of routing 

delay in the RAM vs. standard implementations. 

While in the original BLAKE the level of logic with 

application of RAM was uniformly reduced approx. 

by 11% and so the routing part of the delay (with 

the abovementioned exception of the x2 case), in 

BLAKE2 the optimization took a different path: in 

the x1 and x2 cases it was better to increase the 

number of logic levels in order to gain superior 

reductions in routing delay. Nevertheless the overall 

minimum clock period was shortened, albeit not so 

efficiently as in the corresponding BLAKE 

configurations. The x4 and x5 configurations were 

optimized like in the BLAKE cases (comparable 

reductions both in levels of logic and in routing 

delay) and this led to better reductions in clock 

period. 

 

 
Figure 4. Parameters of the longest path in the 

RAM-based implementations vs. standard results. 

4.3 Scaling efficiency 

Scalability in implementation of the loop unrolled 

architectures is the ability to keep size and speed 

efficiency in proportion to the number of rounds 

instantiated in hardware. As the previous studies 

have shown e.g. in [9] some contemporary 

cryptographic algorithms may exhibit significant 

weaknesses in this aspect, mainly due to their very 

involved and irregular internal organisation which is 

difficult to map to the FPGA array in larger (highly 

unrolled) organizations. In order to consistently 

evaluate scalability of the unrolling mechanism 

among diversity of BLAKE variants and 

organizations, the analysis presented in this point 

was based on comparative relations rather than on 

evaluation of absolute values of the parameters, in 

a manner similar to the one applied already in [10]. 

In every cipher / organization combination the x1 

architecture was taken as a point of reference and its 

characteristics were used for estimation of size and 

speed of the derived architectures in the following 

way. The size of each unrolled architecture xk 

should increase proportionally to the number of 

rounds implemented in hardware (the unrolling 

factor k) and we estimate 

 

   Sizexk  Sizex1 · k                                                 (8) 

 

Maximum frequency of operation – or the minimum 

clock period – depends on the other hand on the 

number of rounds the state must go through in one 

clock cycle, i.e.: 

 

   Tclkxk  Tclkx1 · k                                                (9) 

 

These two equations and the parameters of the x1 

architectures in both algorithms were used for 

calculating the estimated clock periods and numbers 

of LUTs for the x2 - x5 cases and Figure 5 presents 

the results as the ratios actual_value / estimation. 

The lower the ratio, the faster (shorter Tclk) or the 
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smaller (lower number of LUT) was the actual 

design in comparison to what could be expected 

from its x1 case. The value of 100% is the threshold 

separating “better than” (<100%) from “worse than” 

(>100%) the expected. 

Considering the speed aspect (Tclk value) first, it 

should be noted that only RAM-based architectures 

behave close to the expectations for the both cipher 

variants and their deviations from the estimated 

values are within ±5% margin, while the standard 

implementations in most of the cases are noticeably 

worse than estimations. What’s more, deeper 

problems are exhibited in the BLAKE2 version 

despite its much reduced size:  the x4 and x5 cases 

are by 13-14% slower than expected (in BLAKE – 

by 4-7%) and these are the worst results across all 

the cases. This suggests that advantages brought by 

RAM application are more important for 

implementation efficiency than the BLAKE2 

simplifications. 

When looking at changes in speed scaling which 

were brought by the proposed RAM application one 

can see that they are almost always positive i.e. the 

ratios are smaller in the RAM versions than in their 

standard counterparts, with an only exception of the 

x2 case in the BLAKE version. This is also the only 

situation when the standard implementation behaves 

better than expected and the RAM-based worse – 

again an indication of singularity of this particular 

case as it was already noticed in the first analysis of 

this chapter. 

 

 

 

Figure 5. Parameters of the unrolled architectures as 

percentages of the estimations based on the x1 case. 

 

Effects of the scaling in size are more consistent and 

always positive: in all the 12 unrolled cases the 

architectures are always smaller than estimations 

and the decreases are evidently bigger than those in 

the Tclk evaluation. The best reductions by up to 13-

23% are noted for RAM-based BLAKE2 cases and 

the smallest – for BLAKE implemented in the 

standard way (up to 8-10%) but variety across all 

the combinations is not as wide as it was in the 

speed parameter. It is worth noting that again the 

reductions are better in the proposed RAM versions 

than in their standard counterparts, this time without 

a single exception. 

4.4 BLAKE2 versus BLAKE 

In the last analysis we will compare parameters of 

the two versions of the algorithm, again looking at 

the the ratios of respective parameters between the 

two versions of the cipher, implemented in a 

standard way and with memory (Figure 6). 

As it was already remarked in chapter 2.2, BLAKE2 

slightly simplifies processing of the G function by 

removing xor operations which use sixteen 32-bit 

constant words. It is reasonable that the resultant 

proportional reductions in LUT numbers are bigger 

in RAM implementations (down to 75-79%) than in 

the standard ones (to 82-91%) because in those 

cases the removed hardware reduces smaller 

designs. Still it is worth noting that this relatively 

minor amendment in the equations can have 

remarkable influence on size, reducing LUT 

utilization in the x5 RAM case by ¼. In the standard 

implementations, on the other hand, this effect 

scales with the unrolling factor more intensively 

than in the RAM ones. 

 

 
Figure 6. Parameters of BLAKE2 vs. BLAKE 

implementations. 

 

The situation is not so consistent in the Tclk 

parameter. First of all, the two standard cases x4 and 

x5 are slower in the BLAKE2 version than in the 

original BLAKE one. Although their clock periods 

increased by a small margin (+3 and +1%), it is 

against the general trend that smaller designs (with 

75% 

85% 

95% 

105% 

115% 

125% 

Tclk Std. Tclk RAM LUT Std. LUT RAM 

x
2 

x
4 

BLAKE 

75% 

85% 

95% 

105% 

115% 

125% 

Tclk Std. Tclk RAM LUT Std. LUT RAM 

x
2 

x
4 

BLAKE2 

70% 

80% 

90% 

100% 

110% 

Tclk 
LUT 

Tclk 
LUT 

x1 

x2 

x4 

x5 

Std.  
RAM 



Sugier Jarosław 

Memory resources in hardware implementation of BLAKE and BLAKE2 hash algorithms 

 

 

128 

shorter paths) are faster and this indicates some 

problems in automatic routing. This situation was 

improved by applying RAM: all the cases were 

faster in the BLAKE2 version but the progress 

(reductions down to 93-99%) are far from the ones 

observed in the numbers of LUT elements. With the 

only exception of the x1 case, the reductions in the 

Tclk period were better in RAM versions than in the 

equivalent standard ones. 

5. Conclusions 

In this paper we have discussed a modification in 

hardware implementations of the BLAKE and 

BLAKE2 hash algorithms which, by using block 

memory units provided as auxiliary FPGA 

resources, eliminated the need for involved data 

paths  distributing message bits among the round 

modules. These path are specific peculiarity of this 

algorithm and are not needed neither in KECCAK 

(the new SHA-3 standard) nor in ChaCha (upon 

which the BLAKE processing was constructed). The 

idea was implemented in realizations of both 

BLAKE and BLAKE2 versions of the cipher in 4 

different organizations: the standard iterative one 

and three high-speed loop-unrolled architectures 

with 2, 4 and 5 rounds instantiated in hardware. 

Together with standard (without RAM) 

implementations used for comparison this produced 

a total of 16 test cases considered in this paper: after 

implementation in a popular Spartan-3 device from 

Xilinx their parameters allowed for exhaustive 

evaluation of the proposed modification. 

The results reveal that the modification 

outstandingly enhanced size of all the tested 

architectures: on average, occupation of the FPGA 

array was reduced at least by half. The 

improvements in speed, although not so spectacular, 

are also visible, in case of some unrolled 

architectures by up to 1/5. Additional analyses 

indicated that the proposed modification can 

improve overall efficiency of routing, helps in 

generation of the loop-unrolled architectures and 

strengthens optimizations introduced in the 

BLAKE2 version of the algorithm. 

Whether these improvements compensate the extra 

cost of memory blocks introduced to the design 

remains an open issue. In ASIC designs the amount 

of extra memory needed for repetitive storage of the 

message inside each round instance ranges from 

3.5kb in the standard iterative architecture to 5 – 

6.5kb in the unrolled organizations for the cases 

when 4 or 5 rounds are realized in hardware. In the 

FPGA engineering practice, though, it is common 

that the design fitted in the device does not use all 

RAM resources and we have shown that in such 

situations, if there remain some free memory blocks 

in the chip, using such “leftovers” for improvements 

in BLAKE / BLAKE2 implementation is definitely 

an option worth consideration. 
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