Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study introduces a new and effective epileptic seizure detection system based on cepstral analysis utilizing generalized regression neural network for classifying electroen-cephalogram (EEG) recordings. The EEG recordings are obtained from an open database which has been widely studied with many different combinations of feature extraction and classification techniques. Cepstral analysis technique is mainly used for speech recognition, seismological problems, mechanical part tests, etc. Utility of cepstral analysis based features in EEG signal classification is explored in the paper. In the proposed study, mel frequency cepstral coefficients (MFCCs) are computed in the feature extraction stage and used in neural network based classification stage. MFCCs are calculated based on a frequency analysis depending on filter bank of approximately critical bandwidths. The experimental results have shown that the proposed method is superior to most of the previous studies using the same dataset in classification accuracy, sensitivity and specificity. This achieved success is the result of applying cepstral analysis technique to extract features. The system is promising to be used in real time seizure detection systems as the neural network adopted in the proposed method is inherently of non-iterative nature.
Wydawca
Czasopismo
Rocznik
Tom
Strony
201--216
Opis fizyczny
Bibliogr. 51 poz., rys., tab., wykr.
Twórcy
autor
- Küçükyalı E5 Kavşağı İnönü Cad. No: 4, Küçükyalı, 34840 İstanbul, Turkey
autor
- Department of Computer Engineering, Istanbul Commerce University, Istanbul, Turkey
autor
- Department of Computer Engineering, Istanbul Commerce University, Istanbul, Turkey
autor
- Department of Computer Engineering, Istanbul Commerce University, Istanbul, Turkey
Bibliografia
- [1] Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee Jr P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46(4):470–2.
- [2] Guo L, Rivero D, Dorado J, Rabuñal JR, Pazos A. Automatic epileptic seizure detection in EEGs based on line length feature and artificial neural networks. J Neurosci Methods 2010;191(1):101–9.
- [3] Costa RP, Oliveira P, Rodrigues G, Leitão B, Dourado A. Epileptic seizure classification using neural networks with 14 features. Knowl-Based Intell Inform Eng Syst 2008;5178:281–8.
- [4] Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci 2007;80510.
- [5] Murugavel AM, Ramakrishnan S. Wavelet domain approximate entropy-based epileptic seizure detection. Proceedings of the 5th International Conference on Information Technology (ICIT); 2011.
- [6] Goshvarpour A, Ebrahimnezhad H, Goshvarpour A. Classification of epileptic EEG signals using time-delay neural networks and probabilistic neural networks. Int J Inform Eng Electron Business 2013;5(1):59–67.
- [7] Patil MJ, Khadse BK. Analysis of EEG signal for detection of epilepsy seizure. Int J Emerg Technol Comput Appl Sci 2014;7(4):416–20.
- [8] Bao FS, Lie DYC, Zhang Y. A new approach to automated epileptic diagnosis using EEG and probabilistic neural network. Proceedings of 20th IEEE International Conference on Tools with Artificial Intelligence; 2008. p. 482–6.
- [9] Subasi A. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 2007;32(4):1084–93.
- [10] Zainuddin Z, Huong LK, Pauline O. Reliable epileptic seizure detection using an improved wavelet neural network. Austr Med J 2013;6(5):308–14.
- [11] Polat K, Güneş S. Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Appl Math Comput 2007;187(2):1017–26.
- [12] Srinivasan V, Eswaran C, Sriraam N. Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Trans Inform Technol Biomed 2007;11 (3):288–95.
- [13] Kiranmayi GR, Udayashankara V. EEG subband analysis using approximate entropy for the detection of epilepsy. IOSR J Comput Eng 2014;16(5):21–7.
- [14] Mursalin M, Zhang Y, Chen Y, Chawla NV. Automated epileptic seizure detection using improved correlation- based feature selection with random forest classifier. Neurocomputing 2017;241:204–14.
- [15] Das AB, Bhuiyan MIH, Alam SS. Classification of EEG signals using normal inverse Gaussian parameters in the dual-tree complex wavelet transform domain for seizure detection. Signal Image Video Process 2016;10(2):259–66.
- [16] Tiwari AK, Pachori RB, Kanhangad V, Panigrahi BK. Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE J Biomed Health Inform 2017;21(4):888–96.
- [17] Jaiswal AK, Banka H. Local pattern transformation based feature extraction techniques for classification of epileptic EEG signals. Biomed Signal Process Control 2017;34:81–92.
- [18] Jaiswal AK, Banka H. Local transformed features for epileptic seizure detection in EEG signal. J Med Biol Eng 2017;1–14.
- [19] EEG time series data. Department of Epileptology University of Bonn; 2016, http://www.meb.uni-bonn.de/epileptologie/science/physik/ eegdata.html [accessed August 2016].
- [20] Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger C. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 2001;64(6).
- [21] Randall RB. A history of cepstrum analysis and its application to mechanical problems. Proceedings of International Conference at Institute of Technology of Chartres; 2013. p. 11–6.
- [22] Oppenheim AV, Schafer RW. From frequency to quefrency: a history of the cepstrum. IEEE Signal Process Mag 2004;21 (5):95–106.
- [23] Rauner H, Appel U, Wolf W. Application of a cepstral distance measure in evoked potential processing. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP); 1983. p. 280–3.
- [24] Abdul W, Wong JW. Cortical activities pattern recognition for the limbs motor action. Proceedings of IET 4th International Conference on Intelligent Environments; 2008.
- [25] Oppenheim AV. Superposition in a class of nonlinear systems.[PhD dissertation] MIT; 1964., Also: MIT Research Laboratory of Electronics, Cambridge, MA, Technical Report No. 432; 1965.
- [26] Schafer RW. Echo removal by discrete generalized linear filtering.[PhD dissertation] MIT; 1968., Also: MIT Research Laboratory of Electronics, Cambridge, MA, Technical Report No. 466; 1969.
- [27] Oppenheim AV, Schafer RW, Stockham TG:. Nonlinear filtering of multiplied and convolved signals. IEEE Trans Audio Electroacoust 1968;16(3):437–66.
- [28] Bogert BP, Healy MJR, Tukey JW. The quefrency analysis of times series for echoes: cepstrum, pseudo-autocovariance, cross-cepstrum, and saphe cracking. In: Rosenblatt M, editor. Time series analysis. New York: John Wiley and Sons Inc; 1963. p. 209–43.
- [29] Holmes J, Holmes W. Speech synthesis and recognition. London: Taylor & Francis; 2001.
- [30] Rabiner LR, Schafer RW. Introduction to digital speech processing. USA: Now Publishers; 2007.
- [31] Yavuz E, Topuz V. Recognition of Turkish vowels by probabilistic neural networks using Yule-Walker AR method. International Conference on Hybrid Artificial Intelligence Systems; 2010.
- [32] Morgan N, Boulard H, Hermansky H. Automatic speech recognition: an auditory perspective. Springer handbook of auditory research. New York: Springer-Verlag Inc.; 2004. p. 309–38.
- [33] Basheer IA, Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J Microbiol Methods 2000;43(1):3–31.
- [34] Sun M, Sclabassi RJ. The forward EEG solutions can be computed using artificial neural networks. IEEE Trans Biomed Eng 2000;47(8):1044–50.
- [35] Cochocki A, Unbehauen R. Neural networks for optimization and signal processing. New York: John Wiley & Sons, Inc.; 1996.
- [36] Bout DE, Miller TK. Improving the performance of the Hopfield-Tank neural network through normalization and annealing. Biol Cybern 1989;62(2):129–39.
- [37] Specht DF. Probabilistic neural networks. Neural Netw 1990;3:109–18.
- [38] Specht DF. A general regression neural network. IEEE Trans Neural Netw 1991;2(6):568–76.
- [39] Hannan SA, Manza RR, Ramteke RJ. Generalized regression neural network and radial basis function for heart disease diagnosis. Int J Comput Appl 2010;7(13):7–13.
- [40] Bauer MM. General regression neural network for technical use.[Master's thesis] University of Wisconsin-Madison; 1995.
- [41] Demuth H, Beale M, Hagan M. Neural network toolbox user's guide. The MathWorks, Inc.; 2006.
- [42] Tawfik NS, Youssef SM, Kholief M. A hybrid automated detection of epileptic seizures in EEG records. Comput Electr Eng 2016;53:177–90.
- [43] Bhardwaj A, Tiwari A, Krishna R, Varma V. A novel genetic programming approach for epileptic seizure detection. Comput Methods Programs Biomed 2016;124:2–18.
- [44] Satapathy SK, Dehuri S, Jagadev AK. ABC optimized RBF network for classification of EEG signal for epileptic seizure identification. Egypt Inform J 2017;18(1):55–66.
- [45] Kumar Y, Dewal ML, Anand RS. Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Signal Image Video Process 2012;8(7):1323–34.
- [46] Nicolaou N, Georgiou J. Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst Appl 2012;39(1):202–9.
- [47] Orhan U, Hekim M, Ozer M. EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 2011;38:13475–81.
- [48] Das AB, Bhuiyan MIH, Alam SMS. A statistical method for automatic detection of seizure and epilepsy in the dual tree complex wavelet transform domain. IEEE International Conference on Informatics, Electronics and Vision; 2014.
- [49] Hassan AR, Siuly S, Zhang Y. Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Comput Methods Programs Biomed 2016;137:247–59.
- [50] Ocak H. Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst Appl 2009;36(2):2027–36.
- [51] Li M, Chen W, Zhang T. Classification of epilepsy EEG signals using DWT-based envelope analysis and neural network ensemble. Biomed Signal Process Control 2017;31:357–65.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88dec3d6-cc4d-499d-b0df-d62e27bf39c2