Identyfikatory
Warianty tytułu
Zużycie wody i plon pszenicy w warunkach różnego zasolenia wody stosowanej do nawodnień
Języki publikacji
Abstrakty
A field experiment was conducted for determination of crop coefficient (KC) and water stress coefficient (Ks) for wheat crop under different salinity levels, during 2015–2016. Complete randomized block design of five treatments were considered, i.e., 0.51 dS∙m–1 (fresh water, FW) as a control treatment and other four saline water treatments (4, 6, 8 and 10 dS∙m–1), for S1, S2, S3 and S4 with three replications. The results revealed that the water consumed by plants during the different crop growth stages follows the order of FW > S1 > S2 > S3 > S4 salinity levels. According to the obtained results, the calculated values of KC significantly differed from values released by FAO paper No 56 for the crops. The Ks values clearly differ from one stage to another because the salt accumulation in the root zone causes to reduction of total soil water potential (Ψt), therefore, the average values of water stress coefficient (Ks) follows this order; FW(1.0) = S1(1.0) > S2(1.0) > S3(0.93) > S4(0.82). Precise data of crop coefficient, which is required for regional scale irrigation management is lacking in developing countries. Thus, the estimated values of crop coefficient under different variables are essential to achieve the best management practice (BMP) in agriculture.
W latach 2015–2016 przeprowadzono polowy eksperyment w celu określenia współczynnika roślinnego (KC) i współczynnika stresu (Ks) dla pszenicy nawadnianej wodą o różnym zasoleniu. Eksperyment przeprowadzono metodą bloków losowych w pięciu wariantach zasolenia: 0,51 dS∙m–1 (woda słodka FW jako kontrola) oraz 4, 6, 8 i 10 dS∙m–1 odpowiednio dla wariantów S1, S2, S3 i S4, każdy w trzech powtórzeniach. Wyniki wskazują, że woda pobierana przez rośliny w różnych stadiach ich rozwoju układała się w malejącym porządku zasolenia FW > S1 > S2 > S3 > S4. Obliczone wartości współczynnika KC różniły się istotnie od wartości podanych dla upraw w biuletynie FAO nr 56. Wartości Ks różniły się znacząco między poszczególnymi stadiami, ponieważ kumulacja soli w strefie korzeniowej ograniczyła całkowity potencjał wody glebowej (Ψt). Z tego powodu średnie wartości współczynnika stresu (Ks) malały w porządku FW(1,0) = S1(1,0) > S2(1,0) > S3(0,93) > S4(0,82). W krajach rozwijających się brakuje dokładnych danych o współczynniku roślinnym, które są niezbędne w regionalnym zarządzaniu wodą do nawodnień. Dlatego wartości współczynnika oznaczone w różnych wariantach zasolenia są istotne dla osiągnięcia najlepszych praktyk w gospodarce rolnej.
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
- Kashmar Higher Education Institute, Water Science and Engineering Division, 998145784 Kashmar, Iran
Bibliografia
- ABEDINPOUR M. 2015. Evaluation of growth-stage-specific crop coefficients of maize using weighing lysimeter. Soil and Water Research. Vol. 10. Iss. 2 p. 99–104.
- ALLEN R.G., PEREIRA L.S., RAES D. 2006. Evapotranspiration del cultivo: Guias para la determinación de los requerimientos de agua de los cultivos. Estudio FAO Riego e Drenaje Paper. No. 56. ISSN 0254-5293 pp. 298.
- ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56. Rome. FAO. ISBN 92-5-104219-5 pp. 300.
- ALLEN R.G., WALTER I.A., ELLIOT R.L., HOWELL T.A., ITENFISU D., JENSEN M.E., SNYDER R.L. 2005. The ASCE standardized reference evapotranspiration equation. Danvers, MA, USA. American Society of Civil Engineers p. 57–59.
- ARAUJO G.L., REIS E.F., MOREIRA G.R. 2011. Correlações entre variáveis climatológicas e seus efeitos sobre a evapotranspiração de referência [Correlation between climatic variables and effects on the reference evapotranspiration]. Revista Brasileira de Agricultura Irrigada. Vol. 5. No. 2 p. 96–104.
- BANDYOPADHYAY P.K., MALLICK S. 2003. Actual evapotranspiration and crop coefficients of wheat (Triticum aestivum) under varying moisture levels of humid tropical canal command area. Agriculture Water Management. Vol. 59 p. 33–47.
- CAVALCANTE E.G., OLIVERIA A.D., ALMEIDA B.M., SOBRINHO J.E. 2011. Métodos de estimativa da evapotranspiração de referência para as condições do semi árido Nordestino [Methods of estimation of reference crop evapotranspiration for the conditions of northeastern semiarid, Brazil]. Semina: Ciências. Agrárias, Londrina. Vol. 32 p. 1699–1708.
- CRAMER G.R. 1997. Uptake and role of ions in salt tolerance. In: Strategies for improving salt tolerance in higher plant. Eds. P.K. Jaiwal, R.P. Singh, A. Gulati. New Delhi, India. Oxford and IBH Publishing Co., Pvt. Ltd. p. 55–86.
- ER-RAKI S., CHEHBOUNI A., DUCHEMIN B. 2010. Combining satellite remote sensing data with the FAO-56 dual approach for water use mapping in irrigated wheat fields of a semi-arid region. Remote Sensing. Vol. 2 p. 375–387.
- FAO 2013. FAO country profiles: The Islamic Republic of Iran – Agricultural sector. Food and Agricultural Organization of the United Nations, (FAO) [online]. [Access 08.08.2013]. Available at: http://www.fao.org/ countryprofiles/index/en/?iso3=IRN &subject=4
- FARG E., ARAFATA S.M., ABD EL-WAHEDB, M.S., EL-GINDY A.M. 2012. Estimation of evapotranspiration and crop coefficient of wheat, in south Nile Delta of Egypt using integrated FAO-56 approach and remote sensing data. The Egyptian Journal of Remote Sensing and Space Science. Vol. 15 p. 83–89.
- FILHO A.I., BORGES P.F., ARAUJO L.S., PEREIRA, A.R., LIMA E.M., SILVA L.S., SANTOS C.V. 2015. Influência das variáveis climáticas sobre a evapotranspiração [Influence of climatic variables on evapotranspiration. Gaia Scientia. Vol. 9(1) p. 62–66.
- GAURAV P., PRASUN G., JYOTI N. 2010. Crop and irrigation water requirement estimation by remote sensing and GIS: A case study of Karnal district, Haryana, India. International Journal of Engineering and Technology. Vol. 2 p. 207–211.
- KISI O. 2016. Modeling reference evapotranspiration using three different heuristic regression approaches. Agriculture Water Management. Vol. 169 p. 162–172.
- KO J., PICCINNI G., MAREK T., HOWELL T. 2009. Determination of growth-stage specific crop coefficients (KC) of cotton and wheat. Agriculture Water Management. Vol. 96 p. 1691–1697.
- KUMARI M., PATEL N.R., KHAYRULOEVICH P.Y. 2013. Estimation of crop water requirement in rice-wheat system from multi-temporal AWIFS satellite data. International Journal of Geomatics and Geosciences. Vol. 4 p. 61–74.
- MAAS E.V., HOFFMANN G.J. 1977. Crop salt tolerance current assessment. Journal Irrigation Drainage Division. Vol. 103 p. 115–134.
- RÁCZ C., NAGY J., DOBOS A.C. 2013. Comparison of several methods for calculation of reference evapotranspiration. Acta Silvatica and Lignaria Hungarica. Vol. 9 p. 9–24.
- RUSHTON K.R., EILERS V.H.M., CARTER R.C. 2006. Improved soil moisture balance methodology for recharge estimation. Journal of Hydrology. Vol. 318 p. 379–399.
- TYAGI N.K., SHARMA D.K., LUTHRA S.K. 2004. Determination of evapotranspiration and crop coefficient of rice and sunflower with lysimeter. Agriculture Water Management. Vol. 45 p. 41–64.
- WHITE D.A., TURNER N.C., GALBRAITH J.H. 2000. Leaf water relations and stomata behaviour of four allopathic eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiology. Vol. 20 p. 1157–1165.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88dc23d5-e4c1-4093-9c70-81da67079200