PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A review on advances and perspectives of glyphosate determination : challenges and opportunities

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Glyphosate is an inhibitor of the shikimate pathway in plants and the most widely used broad-spectrum herbicide. Due to the abundance of its use, there exists a necessity to measure the levels both in humans and in the environment to control the nefarious outcomes of its use. The appropriateness, selectivity, and the specificity of the employed analytical methods are crucial for the reliability of the resultant deductions when conducting biomonitoring studies on possible exposure to chemicals, whether the samples are biological or environmental in nature. The aim of this study is to evaluate the analytical techniques used to monitor glyphosate levels in human and environmental samples. A detailed web-based literature search was conducted to gather data on the analytical techniques used for glyphosate determination. The most preferred authentic samples are blood, urine, and milk. Environmental samples include plants, soil, and water. Among widely used analytical techniques used to detect glyphosate are High Performance Liquid Chromatography, Liquid Chromatography with tandem mass spectrometry, Gas Chromatography – Tandem Mass Spectrometry, and enzyme-linked immunosorbent assay. Depending on the sample and study, the most suitable analytical method has been selected. A critical evaluation and publication of pre-existing literature on analytical methods in glyphosate-based herbicide detection will thus aid all relevant researchers in the determination of an appropriate, selective, and specific methodology.
Rocznik
Strony
89--98
Opis fizyczny
Bibliogr. 77 poz., tab., wykr.
Twórcy
  •  Near East University, Faculty of Pharmacy, Department of Toxicology, Cyprus
  • Mersin University, Faculty of Pharmacy, Department of Toxicology, Cyprus
autor
  • Near East University, Faculty of Pharmacy, Department of Toxicology, Cyprus
  • Mersin University, Faculty of Pharmacy, Department of Toxicology, Cyprus
autor
  • Near East University, Faculty of Pharmacy, Department of Toxicology, Turkey
Bibliografia
  • 1. Acquavella, J.F., Alexander, B.H., Mandel, J.S., Gustin, C., Baker, B. & Chapman, P. (2004). Glyphosate biomonitoring for farmers and their families: Results from the farm family exposure study. Environmental Health Perspectives 112, pp. 321–326, DOI: 10.1289/ehp.6667
  • 2. Alexa, E., Bragea, M., Sumalan, R., Lăzureanu, A., Negrea, M. & Iancu, S.(2009). Dynamic of glyphosate mineralization in different soil types. Romanian Agricultural Research, https://www.incda-fundulea.ro/rar/nr26/rar26.11.pdf
  • 3. Anifandis, G., Katsanaki, K., Lagodonti, G., Messini, C., Simopoulou, M., Dafopoulos, K. & Daponte, A. (2018). The effect of glyphosate on human sperm motility and sperm DNA fragmentation. International Journal of Environmental Research and Public Health 15, DOI: 10.3390/ijerph15061117
  • 4. Aparicio, V.C., De Gerónimo, E., Marino, D., Primost, J., Carriquiriborde, P. & Costa, J.L. (2013). Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 93, pp. 1866–1873, DOI: 10.1016/j.chemosphere.2013.06.041
  • 5. Avila-Vazquez, M., Difilippo, F.S., Lean, B. Mac, Maturano, E. & Etchegoyen, A. (2018). Environmental Exposure to Glyphosate and Reproductive Health Impacts in Agricultural Population of Argentina. Journal of Environmental Protection 9, pp. 241–253, DOI: 10.4236/jep.2018.93016
  • 6. Banks, M.L., Kennedy, A.C., Kremer, R.J. & Eivazi, F. (2014). Soil microbial community response to surfactants and herbicides in two soils. Applied Soil Ecology 74, pp. 12–20, DOI: 10.1016/j.apsoil.2013.08.018
  • 7. Bento, C.P.M., Goossens, D., Rezaei, M., Riksen, M., Mol, H.G.J., Ritsema, C.J. & Geissen, V. (2017). Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environmental Pollution 220, pp. 1079–1089, DOI: 10.1016/j.envpol.2016.11.033
  • 8. Biagini, R.E., Smith, J.P., Sammons, D.L., MacKenzie, B.A., Striley, C.A.F., Robertson, S.K. & Snawder, J.E. (2004). Development of a sensitivity enhanced multiplexed fluorescence covalent microbead immunosorbent assay (FCMIA) for the measurement of glyphosate, atrazine and metolachlor mercapturate in water and urine. Analytical and Bioanalytical Chemistry, 379, pp. 368–374, DOI: 10.1007/s00216-004-2628-8
  • 9. Bienvenu, J.F., Bélanger, P., Gaudreau, É., Provencher, G. & Fleury, N. (2021). Determination of glyphosate, glufosinate and their major metabolites in urine by the UPLC-MS/MS method applicable to biomonitoring and epidemiological studies. Anal Bioanal Chem, 413, pp. 2225–2234, DOI: 10.1007/S00216-021-03194-X
  • 10. Bothwell, J.H.F. & Griffin, J.L. (2011). An introduction to biological nuclear magnetic resonance spectroscopy. Biological Reviews, DOI: 10.1111/j.1469-185X.2010.00157.x
  • 11. Bressán, I.G., Llesuy, S.F., Rodriguez, C., Ferloni, A., Dawidowski, A.R., Figar, S.B. & Giménez, M.I. (2021). Optimization and validation of a liquid chromatography-tandem mass spectrometry method for the determination of glyphosate in human urine after pre-column derivatization with 9-fluorenylmethoxycarbonyl chloride. J Chromatogr B Analyt Technol Biomed Life Sci, 1171, DOI: 10.1016/J.JCHROMB.2021.122616
  • 12. Brewster, D.W., Warren, J.A. & Hopkins, W.E. (1991). Metabolism of glyphosate in Sprague-Dawley rats: Tissue distribution, identification, and quantitation of glyphosate-derived materials following a single oral dose. Fundamental and Applied Toxicology, 17, pp. 43–51, DOI: 10.1016/0272-0590(91)90237-X
  • 13. Brito, I.P.F.S., Tropaldi, L., Carbonari, C.A. & Velini, E.D. (2018). Hormetic effects of glyphosate on plants. Pest Management Science, DOI: 10.1002/ps.4523
  • 14. Cantwell, F.F. & Losier, M. (2002). Liquid-liquid extraction. Comprehensive Analytical Chemistry, 37, pp. 297–340, DOI: 10.1016/S0166-526X(02)80048-4
  • 15. Cartigny, B., Azaroual, N., Imbenotte, M., Mathieu, D., Vermeersch, G., Goullé, J.P. & Lhermitte, M. (2004). Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy, Forensic Science International, pp. 141–145, DOI: 10.1016/j.forsciint.2004.03.025
  • 16. Cassigneul, A., Benoit, P., Bergheaud, V., Dumeny, V., Etiévant, V., Goubard, Y., Maylin, A., Justes, E. & Alletto, L. (2016). Fate of glyphosate and degradates in cover crop residues and underlying soil: A laboratory study. Science of the Total Environment, 545–546, pp. 582–590, DOI: 10.1016/j.scitotenv.2015.12.052
  • 17. Chiu, H.Y., Lin, Z.Y., Tu, H.L. & Whang, C.W. (2008). Analysis of glyphosate and aminomethylphosphonic acid by capillary electrophoresis with electrochemiluminescence detection. Journal of Chromatography, A, 1177, pp. 195–198, DOI: 10.1016/j.chroma.2007.11.042
  • 18. Connolly, A., Jones, K., Galea, K.S., Basinas, I., Kenny, L., McGowan, P.& Coggins, M. (2017). Exposure assessment using human biomonitoring for glyphosate and fluroxypyr users in amenity horticulture. International Journal of Hygiene and Environmental Health, 220, pp. 1064–1073, DOI: 10.1016/j.ijheh.2017.06.008
  • 17. Curwin, B.D., Hein, M.J., Sanderson, W.T., Striley, C., Heederik, D., Kromhout, H., Reynolds, S.J. & Alavanja, M.C. (2007). Urinary Pesticide Concentrations Among Children, Mothers and Fathers Living in Farm and Non-Farm Households in Iowa. The Annals of Occupational Hygiene, 51, pp. 53–65, DOI: 10.1093/ANNHYG
  • 18. de Villiers, L. & Toit Loots, D. (2013). Using Metabolomics for Elucidating the Mechanisms Related to Tuberculosis Treatment Failure. Current Metabolomics, 1(4), 2013, pp. 306–317
  • 19. Delhomme, O., Rodrigues, A., Hernandez, A., Chimjarn, S., Bertrand, C., Bourdat-Deschamps, M., Fritsch, C., Pelosi, C., Nélieu, S. & Millet, M. (2021). A method to assess glyphosate, glufosinate and aminomethylphosphonic acid in soil and earthworms. Journal of Chromatography, A, 1651, 462339, DOI: 10.1016/J.CHROMA.2021.462339
  • 20. Dhamu, V.N., Poudyal, D.C., Telang, C.M., Paul, A., Muthukumar, S. & Prasad, S. (2021). Electrochemically mediated multi‐modal detection strategy‐driven sensor platform to detect and quantify pesticides. Electrochemical Science Advances, DOI: 10.1002/elsa.202100128
  • 21. EFSA, n.d. Glossary | European Food Safety Authority [WWW Document]. EFSA. URL https://www.efsa.europa.eu/en/ glossary-taxonomy-terms (accessed 5.19.20a).
  • 22. EFSA, n.d. Why do some scientists say that glyphosate is carcinogenic? DOI:10.2805/654221
  • 23. El Deeb, S., Wätzig, H., Abd El-Hady, D., Sänger-van de Griend, C. & Scriba, G.K.E. (2016). Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013–2015). Electrophoresis, DOI: 10.1002/elps.201600058
  • 24. El-Gendy, K., Mosallam, E., Ahmed, N. & Aly, N. (2018). Determination of glyphosate residues in Egyptian soil samples. Analytical Biochemistry, 557, pp. 1–6, DOI: 10.1016/j.ab.2018.07.004
  • 25. European Comission, n.d. EU Pesticides database – European Commission [WWW Document]. URL https://ec.europa.eu/ food/plant/pesticides/eu-pesticides-database/public/?event =activesubstance.detail&language=EN&selectedID=1438 (accessed 2.26.20a).
  • 26. European Comission, n.d. Evaluation of the impact of glyphosate residues in food on human health.
  • 27. FDA, 2016. U.S. Food and Drug Administration Supporting Document for Action Level for Inorganic Arsenic in Rice Cereals for Infants.
  • 28. Fluegge, Keith R. & Fluegge, Kyle R. (2015). Glyphosate use predicts ADHD hospital discharges in the Healthcare Cost and Utilization Project Net (HCUPnet): A two-way fixed-effects analysis. PLoS ONE, 10, DOI: 10.1371/journal.pone.0133525
  • 29. Fontàs, C. & Sanchez, J.M. (2020). Evaluation and optimization of the derivatization reaction conditions of glyphosate and aminomethylphosphonic acid with 6‐aminoquinolyl‐N‐ hydroxysuccinimidyl carbamate using reversed‐phase liquid chromatography. Journal of Separation Science, 43, pp. 3931–3939, DOI: 10.1002/jssc.202000645
  • 30. Gerbreders, V., Krasovska, M., Mihailova, I., Ogurcovs, A., Sledevskis, E., Gerbreders, A., Tamanis, E., Kokina, I. & Plaksenkova, I. (2021). Nanostructure-based electrochemical sensor: Glyphosate detection and the analysis of genetic changes in rye DNA. Surfaces and Interfaces 26, 101332, DOI: 10.1016/J.SURFIN.2021.101332
  • 31. Glass, R.L. (1987). Adsorption of Glyphosate by Soils and Clay Minerals. Journal of Agricultural and Food Chemistry, 35, pp. 497–500, DOI: 10.1021/jf00076a013
  • 32. Gotti, R., Fiori, J., Bosi, S. & Dinelli, G. (2019). Field-amplified sample injection and sweeping micellar electrokinetic chromatography in analysis of glyphosate and aminomethylphosphonic acid in wheat. Journal of Chromatography, A, 1601, pp. 357–364, DOI: 10.1016/j.chroma.2019.05.013
  • 33. Grau, D., Grau, N., Gascuel, Q., Paroissin, C., Stratonovitch, C., Lairon, D., Devault, D.A. & di Cristofaro, J. (2022). Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. Environ Sci Pollut Res Int, 29, DOI: 10.1007/S11356-021-18110-0
  • 34. Grebe, S.K.G. & Singh, R.J. (2011). LC-MS/MS in the clinical laboratory – Where to from here? Clinical Biochemist Reviews, 32, pp. 5–31.
  • 35. Guo, H., Riter, L.S., Wujcik, C.E. & Armstrong, D.W. (2016). Direct and sensitive determination of glyphosate and aminomethylphosphonic acid in environmental water samples by high performance liquid chromatography coupled to electrospray tandem mass spectrometry. Journal of Chromatography, A, 1443, pp. 93–100, DOI: 10.1016/j.chroma.2016.03.020
  • 36. Guo, H., Wang, H., Zheng, J., Liu, W., Zhong, J. & Zhao, Q. (2018). Sensitive and rapid determination of glyphosate, glufosinate, bialaphos and metabolites by UPLC–MS/MS using a modified Quick Polar Pesticides Extraction method. Forensic Science International, 283, pp. 111–117, DOI: 10.1016/j.forsciint.2017.12.016
  • 37. Habekost, A. (2017). Rapid and sensitive spectroelectrochemical and electrochemical detection of glyphosate and AMPA with screen- -printed electrodes. Talanta, 162, pp. 583–588, DOI: 10.1016/J.TALANTA.2016.10.074
  • 38. Hottes, E. (2021). Rapid quantification of residual glyphosate in water treated with layered double hydroxides using liquid chromatography / quantificação rápida de glifosato residual em água tratada com hidróxidos duplos lamelares usando cromatografia líquida. Brazilian Journal of Development, 7(3), pp. 20923–20938, DOI: 10.34117/bjdv7n3-006
  • 39. International Agency for Research on Cancer, 2015. IARC Monograph on Glyphosate.
  • 40. Jansons, M., Pugajeva, I., Bartkevics, V. & Karkee, H.B. (2021). LC-MS/MS characterisation and determination of dansyl chloride derivatised glyphosate, aminomethylphosphonic acid (AMPA), and glufosinate in foods of plant and animal origin. Journal of Chromatography, B, 1177, 122779, DOI: 10.1016/J.JCHROMB.2021.122779
  • 41. Jayasumana, C., Gunatilake, S. & Siribaddana, S. (2015). Simultaneous exposure to multiple heavy metals and glyphosate may contribute to Sri Lankan agricultural nephropathy. BMC Nephrol, 16, 103, DOI: 10.1186/s12882-015-0109-2
  • 42. Jensen, P.K., Wujcik, C.E., McGuire, M.K. & McGuire, M.A. (2016). Validation of reliable and selective methods for direct determination of glyphosate and aminomethylphosphonic acid in milk and urine using LC-MS/MS. Journal of Environmental Science and Health – Part B, Pesticides, Food Contaminants, and Agricultural Wastes 51, pp. 254–259, DOI: 10.1080/03601234.2015.1120619
  • 43. Ladeira, C. & Viegas, S. (2016). Human Biomonitoring – An overview on biomarkers and their application in Occupational and Environmental Health. Biomonitoring, 3, DOI: 10.1515/BIMO-2016-0003
  • 44. Łozowicka, B. & Kaczyński, P. (2011). Pesticide Residues In Apples (2005–2010) . Archives of Environmental Protection, 37(3), pp. 43–54.
  • 45. Manno, M., Viau, C., Cocker, J., Colosio, C., Lowry, L., Mutti, A., Nordberg, M. & Wang, S. (2010). Biomonitoring for occupational health risk assessment (BOHRA). Toxicology Letters, 192, pp. 3–16, DOI: 10.1016/J.TOXLET.2009.05.001
  • 46. Marcelo, G., Elise. Smedbol, Annie, C., Louise, H.-E., Michel, L., Laurent, L., Marc, L. & Philippe, J. (2004). Alteration of Plant Physiology by Glyphosate and Its By-Product Aminomethylphosphonic Acid: An Overview. Journal of Experimental Botany, 65, pp. 4691–4703, DOI: 10.1093/jxb
  • 47. Marek, L.J. & Koskinen, W.C. (2014). Simplified analysis of glyphosate and aminomethylphosphonic acid in water, vegetation and soil by liquid chromatography-tandem mass spectrometry. Pest Management Science, 70, pp. 1158–1164, DOI: 10.1002/ps.3684
  • 48. Martin-Reina, J., Dahiri, B., Carbonero-Aguilar, P., Soria-Dıaz, M.E., González, A.G., Bautista, J. & Moreno, I. (2021). Validation of a simple method for the determination of glyphosate and aminomethylphosphonic acid in human urine by UPLC-MS/ MS. Microchemical Journal, 170, 106760, DOI: 10.1016/J.MICROC.2021.106760
  • 49. Masár, M., Hradski, J., Schmid, M.G. & Szucs, R. (2020). Advantages and pitfalls of capillary electrophoresis of pharmaceutical compounds and their enantiomers in complex samples: Comparison of hydrodynamically opened and closed systems. International Journal of Molecular Sciences, 21, pp. 1–14, DOI: 10.3390/ijms21186852
  • 50. Mcguire, M.K., Mcguire, M.A., Price, W.J., Shafii, B., Carrothers, J.M., Lackey, K.A., Goldstein, D.A., Jensen, P.K. & Vicini, J.L. (2016). Glyphosate and aminomethylphosphonic acid are not detectable in human milk. American Journal of Clinical Nutrition, 103, pp. 1285–1290, DOI: 10.3945/ajcn.115.126854
  • 51. Meftaul, I.M., Venkateswarlu, K., Dharmarajan, R., Annamalai, P., Asaduzzaman, M., Parven, A. & Megharaj, M. (2020). Controversies over human health and ecological impacts of glyphosate: Is it to be banned in modern agriculture? Environmental Pollution, DOI: 10.1016/j.envpol.2020.114372
  • 52. Moldoveanu, S. & David, V. (2015). The Role of Sample Preparation, [In:] Modern Sample Preparation for Chromatography. Elsevier, pp. 33–49, DOI: 10.1016/b978-0-444-54319-6.00002-5
  • 53. Nagatomi, Y., Yoshioka, T., Yanagisawa, M., Uyama, A. & Mochizuki, N. (2013). Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Bioscience, Biotechnology and Biochemistry, 77, pp. 2218–2221, DOI: 10.1271/bbb.130433
  • 54. Ohara, T., Yoshimoto, T., Natori, Y. & Ishii, A. (2021). A simple method for the determination of glyphosate, glufosinate and their metabolites in biological specimen by liquid chromatography/ tandem mass spectrometry: an application for forensic toxicology. Nagoya Journal of Medical Science, 83, 567, DOI: 10.18999/NAGJMS.83.3.567
  • 55. Okada, E., Coggan, T., Anumol, T., Clarke, B. & Allinson, G. (2019). A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples. Analytical and Bioanalytical Chemistry, 411, pp. 715–724, DOI: 10.1007/s00216-018-1490-z
  • 56. Okada, E., Costa, J.L. & Bedmar, F. (2016). Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma, 263, pp. 78–85, DOI: 10.1016/j.geoderma.2015.09.009
  • 57. Philipp Schledorn, M.K. (2014). Detection of Glyphosate Residues in Animals and Humans. Journal of Environmental & Analytical Toxicology, 04, DOI: 10.4172/2161-0525.1000210
  • 58. Phillips, T.M. (2018). Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis, DOI: 10.1002/elps.201700283
  • 59. Poiger, T., Buerge, I.J., Bächli, A., Müller, M.D. & Balmer, M.E. (2017). Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environmental Science and Pollution Research, 24, pp. 1588–1596, DOI: 10.1007/s11356-016-7835-2
  • 60. PubChem, n.d. Glyphosate | C3H8NO5P – PubChem [WWW Document]. URL https://pubchem.ncbi.nlm.nih.gov/compound/Glyphosate#section=Solubility (accessed 7.31.21).
  • 61. Rendón-Von Osten, J. & Dzul-Caamal, R. (2017). Glyphosate Residues in Groundwater, Drinking Water and Urine of Subsistence Farmers from Intensive Agriculture Localities: A Survey in Hopelchén, Campeche, Mexico. International Journal of Environmental Research and Public Health Article, DOI: 10.3390/ijerph14060595
  • 62. Ruiz, P., Dualde, P., Coscollà, C., Fernández, S.F., Carbonell, E. & Yusà, V. (2021). Biomonitoring of glyphosate and AMPA in the urine of Spanish lactating mothers. Sci Total Environ, 801, DOI: 10.1016/J.SCITOTENV.2021.149688
  • 63. Sadkowska, J., Caban, M., Chmielewski, M., Stepnowski, P. & Kumirska, J. (2019). The use of gas chromatography for determining pharmaceutical residues in clinical, cosmetic, food and environmental samples in the light of the requirements of sustainable development. Archives of Environmental Protection, 45, pp. 42–49, DOI: 10.24425/AEP.2019.124829
  • 64. Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H. & Morimoto, S. (2018). Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, DOI: 10.1007/s11418-017-1144-z
  • 65. Scandurra, A., Censabella, M., Gulino, A., Grimaldi, M.G. & Ruffino, F. (2022). Gold nanoelectrode arrays dewetted onto graphene paper for selective and direct electrochemical determination of glyphosate in drinking water. Sens Biosensing Res, 36, 100496, DOI: 10.1016/J.SBSR.2022.100496
  • 66. Sidoli, P., Baran, N. & Angulo-Jaramillo, R. (2016). Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environmental Science and Pollution Research, 23, pp. 5733–5742, DOI: 10.1007/s11356-015-5796-5
  • 67. Steinborn, A., Alder, L., Michalski, B., Zomer, P., Bendig, P., Martinez, S.A., Mol, H.G.J., Class, T.J. & Costa Pinheiro, N. (2016). Determination of Glyphosate Levels in Breast Milk Samples from Germany by LC-MS/MS and GC-MS/MS. Journal of Agricultural and Food Chemistry, 64, pp. 1414–1421, DOI: 10.1021/acs.jafc.5b05852
  • 68. Sviridov, A. V., Shushkova, T. V., Ermakova, I.T., Ivanova, E. V., Epiktetov, D.O. & Leontievsky, A.A. (2015). Microbial degradation of glyphosate herbicides (review). Applied Biochemistry and Microbiology, 51, pp. 188–195, DOI: 10.1134/S0003683815020209
  • 69. Tsao, Y.C., Lai, Y.C., Liu, H.C., Liu, R.H. & Lin, D.L. (2016). Simultaneous determination and quantitation of paraquat, diquat, glufosinate and glyphosate in postmortem blood and urine by LC-MS-MS. Journal of Analytical Toxicology, 40, pp. 427–436, DOI: 10.1093/jat/bkw042
  • 70. Valle, A.L., Mello, F.C.C., Alves-Balvedi, R.P., Rodrigues, L.P. & Goulart, L.R. (2019). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, DOI: 10.1007/s10311-018-0789-5
  • 71. Van Bruggen, A.H.C., He, M.M., Shin, K., Mai, V., Jeong, K.C., Finckh, M.R. & Morris, J.G. (2018). Environmental and health effects of the herbicide glyphosate. Science of the Total Environment, DOI: 10.1016/j.scitotenv.2017.10.309
  • 72. Von Ehrenstein, O.S., Ling, C., Cui, X., Cockburn, M., Park, A.S., Yu, F., Wu, J. & Ritz, B. (2019). Prenatal and infant exposure to ambient pesticides and autism spectrum disorder in children: Population based case-control study. The BMJ, 364, DOI: 10.1136/bmj.l962
  • 73. Yadav, P. & Zelder, F. (2021). Detection of glyphosate with a copper(ii)- pyrocatechol violet based GlyPKit. Analytical Methods, 13, pp. 4354–4360, DOI: 10.1039/D1AY01168E
  • 74. Zhang, C., Hu, X., Luo, J., Wu, Z., Wang, L., Li, B., Wang, Y. & Sun, G. (2015). Degradation dynamics of glyphosate in different types of citrus orchard soils in China. Molecules, 20, pp. 1161–1175, DOI: 10.3390/molecules20011161
  • 75. Zhang, H., Liu, X., Huo, Z., Sun, H., Zhang, F. & Zhu, B. (2021). An ion chromatography tandem mass spectrometry (IC-MS/ MS) method for glyphosate and amino methyl phosphoric acid in serum of occupational workers. Microchemical Journal, 170, DOI: 10.1016/J.MICROC.2021.106614
  • 76. Zoller, O., Rhyn, P., Zarn, J.A. & Dudler, V. (2020). Urine glyphosate level as a quantitative biomarker of oral exposure. International Journal of Hygiene and Environmental Health, 228, 113526, DOI: 10.1016/J.IJHEH.2020.113526
  • 77. Zouaoui, K., Dulaurent, S., Gaulier, J., Moesch, C. & Lachâtre, G. (2013). Determination of glyphosate and AMPA in blood and urine from humans: about 13 cases of acute intoxication. Forensic Sci Int, 226, DOI: 10.1016/J.FORSCIINT.2012.12.010
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88d6be48-1a99-4776-814e-ed7500d51817
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.