PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Different Patterns of Changes in Foliar Carbon Isotope Composition Along Altitude

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Three types of alpine plant species, Carex montis-everestii, Quercus aquifolioides and Stipa capillacea, along an altitudinal gradient of 3005-5025 m on the Tibetan Plateau, were chosen to test the generality of the hypothesis that foliar carbon isotope composition (δ13C) of C3 plants increases significantly with altitude and to determine climate drivers shaping its altitudinal pattern. Temperature and relative humidity showed significantly negative correlations with altitude; however, precipitation and soil water potential remained unchanged with altitude. Foliar δ13C of C. montis-everestii, Q. aquifolioides, S. capillacea alone or combined together did not significantly increase with altitude, which does not support the leading hypothesis of increased foliar δ13C with altitude. There was no difference in foliar δ13C among all three species. Multi-factor correlation analyses showed that temperature, precipitation and relative humidity alone did not affect foliar δ13C of C. montis-everestii and S. capillacea, but conferred significant effects on foliar δ13C of Q. aquifolioides.
Rocznik
Strony
227--235
Opis fizyczny
Bibliogr. 61 poz., tab.
Twórcy
autor
  • College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, P.R. China
autor
  • College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, P.R. China
autor
  • College of Tourism and Territorial Resources, Jiujiang University, Jiujiang 332005, P.R. China
autor
  • College of Pharmacy and Life Sciences, Jiujiang University, Jiujiang 332000, P.R. China
autor
  • College of Civil Engineering and Urban Construction, Jiujiang University, Jiujiang 332005, P.R. China
Bibliografia
  • [1] Anderson J. E., Williams J., Kriedemann P. E., Austin, M. P., Farquhar G. D. 1996 — Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden — Aust. J. Plant Physiol. 23: 311-320.
  • [2] Chen L. T., Flynn D. F. B., Zhang X. W., Gao X. L., Lin L., Luo J., Zhao C. M. 2015 — Divergent patterns of foliar δ13C and δ15N in Quercus aquifolioides with an altitudinal transect on the Tibetan Plateau: an integrated study based on multiple key leaf functional traits — J. Plant Ecol. 8: 303-312.
  • [3] David T. S., Henriques M. O., Kurz-Besson C., Nunes J., Valente F., Vaz M., Pereira J. S., Siegwolf R., Chaves M. M., Gazarini L. C., David J. S. 2007 — Water-use strategies in two co-occurring Mediterranean evergreen oaks — surviving the summer drought — Tree Physiol. 27: 793-803.
  • [4] Dawson T. E., Mambelli S., Plamboeck A. H., Templer P. H., Tu K. P. 2002 — Stable isotopes in plant ecology — Annu. Rev. Ecol. Syst. 33: 507-559.
  • [5] De Frenne P., Kolb A., Verheyen K., Brunet J., Chabrerie O., Decocq G., Diekmann M., Eriksson O., Heinken T., Hermy M., Jõgar Ü., Stanton S., Quataert P., Zindel R., Zobel M., Graae B. J. 2009 — Unravelling the effects of temperature, latitude and local environment on the reproduction of forest herbs — Global Ecol. Biogeogr. 18: 641-651.
  • [6] Diefendorf A. F., Mueller K. E., Wing S. L., Koch P. L., Freeman K. H. 2010 — Global patterns in leaf 13C discrimination and implications for studies of past and future climate — PNAS 107: 5738-5743.
  • [7] DFRPS (Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita) 1987 — Flora Reipublicae Popularis Sinicae — Sci. Press, Beijing, 9: 271-272 (in Chinese).
  • [8] DFRPS (Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita) 1998 — Flora Reipublicae Popularis Sinicae — Sci. Press, Beijing, 22: 242-243 (in Chinese).
  • [9] DFRPS (Delectis Florae Reipublicae Popularis Sinicae, Agendae Academiae Sinicae Edita) 2000 — Flora Reipublicae Popularis Sinicae — Sci. Press, Beijing, 12: 229-230 (in Chinese).
  • [10] EBVC (Editorial Board for Vegetation of China) 1980 — [Vegetation of China] — Academic Press, Beijing, pp. 657-713 (in Chinese).
  • [11] Farquhar G. D., Ehleringer J. R., Hubick K. T. 1989 — Carbon isotopic discrimination and photosynthesis — Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 503-537.
  • [12] Feng Q. H., Centritto M., Cheng R. M., Liu S., Shi Z. 2013 — Leaf functional trait responses of Quercus aquifolioides to high elevations — Int. J. Agric. Biol. 15: 69-75.
  • [13] Friend A. D., Woodward F. I., Switsor V. R. 1989 — Field measurements of photosysnthesis, stomatal conductance, leaf nitrogen, and δ13C along altitudinal gradients in Scotland — Funct. Ecol. 3: 117-122.
  • [14] Guo G., Xie G. 2006 — The relationship between plant stable carbon isotope composition, precipitation and satellite data, Tibet Plateau, China — Quat. Int. 144: 68-71.
  • [15] Hawkins B. A., Agrawal A. A. 2005 — Latitudinal gradient — Ecology, 86: 2261-2262.
  • [16] He W. M., Callaway R.M. 2009 — The potential for misleading correlations in single-factor analysis of complex gradients — Web Ecol. 9: 77-81.
  • [17] He Z. S., He W. M., Yu F. H., Shi P. L., Zhang X. Z., He Y. T., Zhong Z. M., Dong M. 2007 — Do clonal growth form and habitat origin affect resource-induced plasticity in Tibetan alpine herbs? — Flora, 202: 408-416.
  • [18] Hemming D., Yakir D., Ambus P., Aurela M., Besson C., Black K., Buchmann N., Burlett R., Cescatti A., Clement R., Gross P., Granier A., Grünwald T., Havrankova K., Janous D., Janssens I. A., Knoh A., Östner B. K., Kowalski A., Laurila T., Mata C., Marcolla B., Matteucci G., Moncrieff J., Moors E. J., Osborne B., Pereira J. S., Pihlatie M., Pilegaard K., Ponti F., Rosova Z., Rossi F., Scartazza A., Vesala T. 2005 — Pan‐European δ13C values of air and organic matter from forest ecosystems — Global Change Biol. 11: 1065-1093.
  • [19] Hultine K. R., Marshall J. D. 2000 — Altitude trends in conifer leaf morphology and stable carbon isotope composition — Oecologia, 123: 32-40.
  • [20] Kang S., Xu Y., You Q., Flügel W. A., Pepin N., Yao T. 2010 — Review of climate and cryospheric change in the Tibetan Plateau — Environ. Res. Lett. 5: 015101.
  • [21] Kelly C. K., Woodward F. I. 1995 — Ecological correlates with carbon isotope composition of leaves — a comparative analysis testing for the effects of temperature, CO2 and O2 partial pressure and taxonomic relatedness on δ13C — J. Ecol. 83: 509-515.
  • [22] Kogami H., Hanba Y. T., Kibe T., Terashima I., Masuzawa T. 2001 — CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes — Plant Cell Environ. 24: 529-538.
  • [23] Kohn M. J. 2010 — Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate — PNAS, 107: 19691-19695.
  • [24] Körner C. 2003 — Alpine plant life — functional plant ecology of high mountain ecosystems. 2 ed. — Springer-Verlag, Berlin, 349 pp.
  • [25] Körner C. 2007 — The use of ‘altitude’ in ecological research — Trends Ecol. Evol. 22: 569-574.
  • [26] Körner Ch., Farquhar G. D., Roksandic Z. 1988 — A global survey of carbon isotope discrimination in plants from high altitude — Oecologia, 74: 623-632.
  • [27] Körner Ch., Farquhar G. D., Wong S. C. 1991 — Carbon isotope discrimination by plants follows latitudinal and altitudinal trends — Oecologia, 88: 30-40.
  • [28] Li J. Z., Wang G. A., Liu X. Z., Han J. M., Liu M., Liu X. J. 2009 — Variations in carbon isotope ratios of C3 plants and distribution of C4 plants along an altitudinal transect on the eastern slope of Mount Gongga — Sci. China Earth Sci. 52: 1714-1723.
  • [29] Li M. C., Liu H. Y., Li L. X., Yi X. F., Zhu X. J. 2007 — Carbon isotope composition of plants along altitudinal gradient and its relationship to environmental factors on the Qinghai-Tibet Plateau — Pol. J. Ecol. 55: 67-78.
  • [30] Liu W. S., Dong M., Song Z. P., Wei W. 2009 — Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai-Tibet Plateau — Ann. Appl. Biol. 154: 57-65.
  • [31] Luo T., Luo J., Pan Y. 2005 — Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, eastern Tibetan Plateau — Oecologia, 142: 261-273.
  • [32] Marshall J. D., Zhang J. 1994 — Carbon isotope discrimination and water-use efficiency in native plants of the north-central Rockies — Ecology, 75: 1887-1895.
  • [33] Michalet R., Schöb C., Lortie C. J., Brooker R. W., Callaway R. M. 2014 — Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change — Funct. Ecol. 28: 75-86.
  • [34] Morecroft M. D., Woodward F. I. 1990 — Experimental investigations on the environmental determination of δ13C at different altitudes — J. Exp. Bot. 41: 1303-1308.
  • [35] Morecroft M. D., Woodward F. I. 1996 — Experiments on the causes of altitudinal differences in leaf nutrient contents, size, and δ13C of Alchemilla alpina — New Phytol. 134: 471-479.
  • [36] Moore D. J., Nowak R. S., Tausch R. J. 1999 — Gas exchange and carbon isotope discrimination of Juniperus osteosperma and Juniperus occidentalis across environmental gradients in the Great Basin of western North America — Tree Physiol. 19: 421-433.
  • [37] Pan S., Zhang W. P., Zhao M. S., Li Y., Xu S. S., Wang G. X. 2015 — Altitude patterns of leaf carbon isotope composition in a subtropical monsoon forest — Pol. J. Ecol. 63: 512-522, doi: 103161/15052249PJE2015.63.4.004.
  • [38] Peri P. L., Ladd B., Pepper D. A., Bonser S. P., Laffan S. W., Amelung W. 2012 — Carbon (δ13C) and nitrogen (δ15N) stable isotope composition in plant and soil in Southern Patagonia's native forests — Global Change Biol. 18: 311-321.
  • [39] Qiang W. Y., Wang X. L., Chen T., Feng H. Y., An L. Z., He Y. Q., Wang G. 2003 — Variation of stomatal density and carbon isotope values of Picea crassifolia at different altitudes in the Qilian Mountains — Trees, 17: 258-262.
  • [40] QPIST (Qing-Zang Plateau Integrative Surveying Team) 1988 — [Vegetation of Tibet] — Sci. Press, Beijing, 589 pp. (in Chinese).
  • [41] Read J., Farquhar G. D. 1991 — Comparative studies in Nothofagus (Fagaceae). I. Leaf carbon isotope discrimination — Funct. Ecol. 5: 684-695.
  • [42] Schulze E.-D., Willams R. J., Farquhar G. D., Schulze W., Langridge J., Miller J. M., Walker B. H. 1998 — Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia — Aust. J. Plant Physiol. 25: 413-425.
  • [43] Shi Z., Liu S., Liu X., Centritto M. 2006 — Altitudinal variation in photosynthetic capacity, diffusional conductance and δ13C of butterfly bush (Buddleja davidii) plants growing at high elevations — Physiol. Plantarum, 128: 722-731.
  • [44] Sparks J. P., Ehleringer J. R. 1997 — Leaf carbon isotope discrimination and nitrogen content of riparian trees along an elevational gradient — Oecologia, 109: 362-367.
  • [45] Stewart G. R., Turnbull M. H., Schmidt S., Erskine P. D. 1995 — 13C natural abundance in plant communities along a rainfall gradient — a biological integrator of water availability — Aust. J. Plant Physiol. 22: 51-55.
  • [46] Stuiver M., Braziunas T. F. 1987 — Tree cellulose 13C/12C isotope ratios and climatic change — Nature, 328: 58-60.
  • [47] Sun H., Zheng D. 1998 — [Formation and development of Qing-Zang Plateau] — Guangdong Science and Technology Press, Guangzhou, 350 pp. (in Chinese).
  • [48] Taiz L., Zeiger E. 2002 — Plant Physiology. 3rd ed — Sinauer Associates Inc. Publishers, Massachusetts, 690 pp.
  • [49] Ter Braak C. J. F., Prentice I. C. 2004 — A theory of gradient analysis — Adv. Ecol. Res. 34: 236-282.
  • [50] Tieszen L. L., Senyimba M. M., Imbamba S. K., Troughton J. H. 1979 — The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya — Oecologia, 37: 337-350.
  • [51] van de Water P. K., Leavitt S. V., Betancourt J. L. 2002 — Leaf δ13C variability with altitude, slope aspect, and precipitation in the southwest United States — Oecologia, 132: 332-343.
  • [52] Vitousek P. M., Field C. B., Matson P. A. 1990 — Variation in foliar δ13C in Hawaiian Metrosideros polymorpha — a case of internal resistence — Oecologia, 84: 362-370.
  • [53] Wang N., Xu S. S., Jia X., Gao J., Zhang W. P., Qiu Y. P., Wang G. X. 2013 — Variations in foliar stable carbon isotopes among functional groups and along environmental gradients in China — a meta-analysis — Plant Biol. 15: 144-151.
  • [54] Warren C. R., McGrath J. F., Adams M. A. 2001 — Water availability and carbon isotope discrimination in conifers — Oecologia, 127: 476-486.
  • [55] Wiens J. J., Ackerly D. D., Allen A. P., Anacker B. L., Buckley L. B., Cornell H. V., Damschen E. I., Davies T. J., Grytnes J.-A., Harrison S. P., Hawkins B. A., Holt R. D., McCain C. M., Stephens P. R. 2010 — Niche conservatism as an emerging principle in ecology and conservation biology — Ecol. Lett. 13: 1310-1324.
  • [56] Wiens J. J., Graham C. H. 2005 — Niche conservatism — integrating evolution, ecology, and conservation biology — Annu. Rev. Ecol. Syst. 36: 519-39.
  • [57] Xu P., Zhang X., Zhao C., Chen L., Gao X., Yao B., Deng J., Deng Y. 2014 — Foliar responses of Abies fargesii Franch. to altitude in the Taibai Mountain, China — Pol. J. Ecol. 62: 479-492.
  • [58] Yin C., Wang X., Duan B., Luo J., Li C. 2005 — Early growth, dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress — Environ. Exp. Bot. 53: 315-322.
  • [59] Zhang J., Marshall J. D. 1995 — Variation in carbon isotope discrimination and photosynthetic gas exchange of Pseudotsuga menziessi and Pinus ponderosa in different environments — Func. Ecol. 9: 402-412.
  • [60] Zhou Y., Fan J., Zhang W., Harris W., Zhong H., Hu Z., Song L. 2011 — Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China — Alpine Bot. 121: 79-90.
  • [61] Zhu Y., Siegwolf R. T. W., Durka W., Körner C. 2010 — Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients — Oecologia, 162: 853-863.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88d5ff47-1f4e-49ff-b0fe-6b41f599b63e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.