PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Borowce jako centra kwasów Lewisa w oddziaływaniach międzycząsteczkowych : porównanie z wiązaniami wodorowymi

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Triels as centers of Lewis acids in intermolecular interactions : comparison with hydrogen bonds
Języki publikacji
PL
Abstrakty
EN
The triel bonds are analyzed and compared with the hydrogen bond interaction. The triel bonds belong to the class of interactions that are named as the σ-hole and π-hole bonds. The σ-hole bond is an interaction between the σ-hole characterized by the positive electrostatic potential and the electron rich regions such as lone electron pairs, π-electron systems, in other words, centers paying a role of Lewis bases. The σ-holes may be observed for elements of the 14–18 groups of the periodic system and the corresponding interactions with Lewis bases are named; tetrel, pnicogen, chalcogen, halogen and aerogen bonds, respectively. On the other hand, π-holes also characterized by the positive electrostatic potential are observed for centers in planar molecules or planar fragments of molecules in regions above those planes. π-holes may be attributed to triel centers (13th group of the periodic system). The boron and aluminium trihydrides and trihalides are examples of molecules where triels are characterized by π-holes. The mechanism of the triel bond formation is very similar to the mechanism of the formation of the hydrogen bond. It is the Lewis acid – Lewis base interaction where the electron charge transfer from the base unit to the acid one is observed. Next there is outflow of the electron charge from the triel center to the other parts of the Lewis acid unit; in other words the positive charge of the triel center increases as a result of complexation. The triel bonds are often very strong and often they possess characteristics of typical covalent bonds; this is confirmed by the QTAIM (Quantum Theory of Atoms in Molecules) and NBO (Natural Bond Orbital) approaches. For example, for the triel bonds the bond paths between the triel center and the Lewis base center are observed with the bond critical points (BCPs) attributed to those paths. Similarly for the A-H…B hydrogen bonds the H…B bond paths are observed. The parameters of those BCPs often indicate the covalent character of the triel bonds and analogously those characteristics for H-bonds may also indicate the covalent character of the latter interactions. It is very interesting that the triel bonds are observed experimentally in the real systems; for example in crystal structures. The triel center which is trivalent and possesses the trigonal configuration is hypovalent; it means that the octet rule is not obeyed here because of the valence electrons´ deficiency (the triel center possesses six valence electrons in such species). Thus it may interact with one Lewis base ligand reaching rather stable octet and tetrahedral configuration. If the trivalent triel center interacts with two Lewis base ligands thus it may lead to the configuration of the trigonal bipyramid with the hypervalent and pentavalent triel center. These kinds of the triel species occur in crystal structures that are described here.
Rocznik
Strony
447--471
Opis fizyczny
Bibliogr. 42 poz., rys., schem., tab.
Twórcy
  • Faculty of Chemistry, University of the Basque Country and Donostia, International Physics Center (DIPC), P.K. 1072 20080 Donostia - San Sebastián, Spain
  • IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
Bibliografia
  • [1] H.-J. Schneider, Angew. Chem. Int. Ed., 2009, 48, 3924.
  • [2] R. Custelcean, J.E. Jackson, J. Am. Chem. Soc., 1998, 120, 12935.
  • [3] L. Sobczyk, S.J. Grabowski, T.M. Krygowski, Chem. Rev., 2005, 105, 3513.
  • [4] Z. Latajka, S. Scheiner, Chem. Phys. 1988, 122, 413.
  • [5] S.J. Grabowski, Phys. Chem. Chem. Phys., 2014, 16, 1824.
  • [6] S.J.Grabowski, Wiad. Chem., 2011, 65, 975.
  • [7] P.Politzer, J.S. Murray, Chem. Phys. Chem., 2013, 14, 2145.
  • [8] T. Clark, M. Hennemann, J.S. Murray, P. Politzer, J. Mol. Model, 2007, 13, 291.
  • [9] R.F.W. Bader, M.T. Carrol, J.R. Cheeseman, C. Chang, J. Am. Chem. Soc., 1987, 109, 7968.
  • [10] A. Bauza, A. Frontera, Angew. Chem. Int. Ed., 2015, 54, 7340.
  • [11] P.A. Kollman, J.F. Liebman, L.C. Allen, J. Am. Chem. Soc., 1970, 92, 1142.
  • [12] M. Yanez, P. Sanz, O. Mo, I. Alkorta, J. Elguero, J. Chem. Theory Comput., 2009, 5, 2763.
  • [13] S.J. Grabowski, Chem. Phys. Chem., 2014, 15, 2985.
  • [14] S.J. Grabowski, Chem. Phys. Chem., 2015, 16, 1470.
  • [15] S.J. Grabowski, Molecules, 2015, 20, 11297.
  • [16] S.J. Grabowski, Struct. Chem., 2017, 28, 1163.
  • [17] F. Weinhold, C. Landis, Valency and Bonding, A Natural Bond Orbital Donor – Acceptor Perspective, Cambridge University Press 2005.
  • [18] H. Hirao, K. Omoto, H. Fujimoto, J. Phys. Chem. A, 1999, 103, 5807.
  • [19] N. Vinh-Son, S. Swinnen, M.H. Matus, M.T. Nguyen, D.A. Dixon, Phys. Chem. Chem. Phys., 2009, 11, 6339.
  • [20] M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Chem. Rev., 2012, 112, 782.
  • [21] Z. Latajka, L. Sobczyk, The Potential Energy Shape for the Proton Motion in Protonated Naphthalene Proton Sponges (DMAN-s) and its Manifestations, [w:] Practical Aspects of Computational Chemistry, J. Leszczynski, M.K. Shukla (Red.), Springer, New York 2009, s. 371.
  • [22] E. Grech, Z. Malarski, W. Sawka-Dobrowolska, L. Sobczyk, J. Phys. Org. Chem., 1999, 12, 313
  • [23] A.J. Bieńko, Z.Latajka, W. Sawka-Dobrowolska, L. Sobczyk, J.Chem. Phys. 2003, 119, 4313.
  • [24] L. Pauling, The Nature of the Chemical Bond, Ithaca, NY, Cornell University Press, Ithaca, New York, 3rd edition, 1960. “under certain conditions an atom of hydrogen is attracted by rather strong forces to two atoms, instead of only one, so that it may be considered to be acting as a bond between them. This is called the hydrogen bond”
  • [25] G. Pimentel, A. McClellan, The hydrogen bond, Freeman, San Francisco 1960.
  • [26] E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, Pure Appl. Chem., 2011, 83, 1637. “The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule or a molecular fragment X–H in which X is more electronegative than H, and an atom or a group of atoms in the same or a different molecule, in which there is evidence of bond formation.¨
  • [27] S.J. Grabowski, Hydrogen Bond and Other Lewis Acid–Lewis Base Interactions – Mechanisms of Formation, [w:] Practical Aspects of Computational Chemistry IV, J. Leszczynski, M.K. Shukla (Red.), Springer, New York 2016, s. 245.
  • [28] L. Piela, Ideas of Quantum Chemistry, Elsevier Science Publishers, Amsterdam, Netherlands 2007.
  • [29] R.J. Gillespie, P.L.A. Popelier, Chemical Bonding and Molecular Geometry, Oxford University Press, Oxford 2001.
  • [30] F.H. Allen, Acta Cryst., 2002, B58, 380.
  • [31] G.R. Desiraju, T. Steiner, The weak hydrogen bond in structural chemistry and biology, Oxford University Press, Inc., New York 1999.
  • [32] M. Nishio, M. Hirota, Y. Umezawa, The CH/π Interaction, Evidence, Nature, and Consequences, Wiley-VCH, New York 1998.
  • [33] S.J. Grabowski, J. Phys. Org. Chem., 2013, 26, 452.
  • [34] D.T. Moore, R.E. Miller, J. Chem. Phys., 2003, 118, 9629.
  • [35] E.J. Bieske, S.A. Nizkorodov, F.R. Bennett, J.P. Maier, J. Chem. Phys., 1996, 102, 5152.
  • [36] S.J. Grabowski, W.A. Sokalski, J. Leszczynski, J. Phys. Chem. A, 2004, 108, 1806.
  • [37] G.E. Douberly, A.M. Ricks, B.W. Ticknor, W.C. McKee, P.v.R. Schleyer, M.A. Duncan, J. Phys. Chem. A, 2008, 112, 1897.
  • [38] S. Fau, G. Frenking, Mol. Phys., 1999, 96, 519.
  • [39] R.F.W. Bader, Atoms in Molecules, A Quantum Theory, Oxford University Press, Oxford, 1990.
  • [40] S.J. Grabowski, Chem. Rev., 2011, 111, 2597.
  • [41] AIMAll (Version 11.08.23), A. Todd, T.K. Keith, Gristmill Software, Overland Park KS, USA, 2011 (aim.tkgristmill.com).
  • [42] https://www.chemcraftprog.com.
Uwagi
Praca dedykowana Profesorowi Lucjanowi Sobczykowi z okazji 90. rocznicy urodzin
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88d56529-23b3-4e40-9e33-2f287f64389c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.