Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bismuth niobate (BiNbO4) ceramics were fabricated by mixed oxide method and sintered by presureless sintering method. BiNbO4 ceramics doped with V2 O5 additive in amount 0.125 wt%, 0.250 wt% and 1 wt% of was sintered at T = 910°C whereas BiNbO4 ceramics doped with 2 wt% of CuO additive was sintered at T = 890°C and T = 910°C. It was found that V2 O5 additive improved morphology of the ceramic samples. However, the chemical composition of BiNbO4 ceramics in relation to bismuth oxide and niobium oxide manifested a tendency of lack of Bi2 O3 component. Absorption bands for the BiNbO4 compound were identified. FTIR band positions associated with NbO6 octahedra suggested that the crystal structure changes after V2 O5 incorporation.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
817--821
Opis fizyczny
Bibliogr. 14 poz., fot., rys., tab.
Twórcy
autor
- Requimte/Laqv, Departamento de Química e Bioquímica, Faculdade de Ciências, Univ. do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering and Welding, 11/12, Narutowicza Str., 80-233 Gdańsk, Poland
Bibliografia
- [1] Di Zhou, Hong Wang, Xi Yao, Materials Chemistry and Physics 104, 397-402 (2007).
- [2] Yi-Cheng Liou, Wen-Chou Tsai, Hong-Meng Chen, Ceram. Int. 35, 2119-2122 (2009).
- [3] W. Wersing, Current Opinion in Solid State and Materials Science 1, 5, 715-731 (1996).
- [4] H. Kagata, T. Inoue, J. Kato, I. Kameyama, Jpn. J. Appl. Phys. 31, 3152-3155 (1992).
- [5] D. Czekaj, A. Lisińska-Czekaj, Advances in Materials Science 18, 35 (2018).
- [6] M. L. Alcântara, J. S. da Silva, R. O. Soares, H. M. C. Andrade, L. A. da Silva, A. J. S. Mascarenhas, Materials Research Bulletin 103, 166 (2018).
- [7] H.-F. Zhai, X. Qian, J.-Z. Kong, A.-D. Li, Y.-P. Gong, H. Li, D. Wu, Journal of Alloys and Compounds 509, 10230 (2011).
- [8] K. S. Rao, S. Buddhudu, Ferroelectrics Letters 37, 101 (2010).
- [9] P. Ayyub, M. S. Multani, V. R. Palkar, R. Vijayaraghavan, Phys. Rev. B 34, 8137 (1986).
- [10] K. C. Mathai, S. Vidya, A. John, S. Solomon, J. K. Thomas, Advances in Condensed Matter Physics, 6 (2014).
- [11] M. Verma, A. Tanwar, K. Sreenivas, J. Therm. Anal. Calorim. 135, 2077 (2019).
- [12] A. Acosta-Rangel, M. Sánchez-Polo, A. M. S. Polo, J. Rivera-Utrilla, M. S. Berber-Mendoza, Chemical Engineering Journal 344, 21 (2018).
- [13] I. Kuźniarska-Biernacka, A. R. Silva, A. P. Carvalho, J. Pires, C. Freire, Langmuir 21, 10825 (2005).
- [14] L. Zhang, X. Yao, H. Wang, D. Zhou, Journal of Electroceramics 21, 465 (2008).
Uwagi
EN
1. The present research has been supported by Polish National Science Centre (NCN) as a research project N N507 218540. The work was supported by UIDB/50006/2020 with funding from FCT/MCTES through nationalfunds.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88d52147-54c1-4320-99fb-6724f7ff5abf