PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preparation and Study of Acid-Base and Ion-Exchange Properties of Biochar from Waste Coffee Grounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increased consumption of coffee in the world leads to the accumulation of food waste that is not properly utilised properly, but have prospects for further processing into a targeted with added value. The aim of this study is to produce biochar from waste coffee grounds by coffee grounds by conventional pyrolysis and microwave irradiation, determination of its chemical and particle size distribution, study of acid-base and ion exchange properties, ability to bind ions and lead ions for further use as an additive in the production of biogas production. Given the high cost of conventional pyrolysis to produce the required volumes of biochar, it is promising to consider an alternative option that will be significantly cost-effective and efficient. After carbonisation, we determined the biopolymer composition, acid-base and ion exchange properties of the raw materials and biochar using various methods, such as the Kjeldahl Hogedron-Jensen, potentiometric titration and others. The results of the maximum cation exchange capacity of raw materials and biochar indicate that biochar has a less pronounced tendency to exchange cations in the range of 0.89–1.15 μeV/g than raw materials, the value of which is mainly in the range of 1–3 μeV/g, which shows less influence of biochar on the mineral balance of microorganisms during anaerobic digestion. The values of the anion exchange capacity of biochar are in the range of values 0.7–1.2 μeV/g, and the pH value of the acidic groups of biochar lie in the range of 7.1–10.7 (characterising them as weakly acidic groups), pKa is 9.6–10.7. The curves of potentiometric titration of biochar are determined by the additive contribution of all ionised groups of biochar and allow us to classify the studied products as polyfunctional ion exchangers type ion exchangers. Results of the study of biochars from waste coffee grounds show that they have ampholytic properties and act as acceptors of metal ions, as well as function as a mild pH regulator, which is important in anaerobic digestion of food waste into biogas to increase the yield of the resulting gas in accordance with the biocircular green economy model.
Twórcy
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Institute for Ecopreneurship, School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Hofackerstrasse 30, 4132, Muttenz, Switzerland
autor
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
  • Odesa National University of Technology, St. Kanatna, 112, Odesa, Ukraine, 65039
Bibliografia
  • 1. Aguirre J. 2022. The Kjeldahl Method: 140 Years, Guildford, UK. https://doi.org/10.1007/978-3-031-31458-2
  • 2. Allende S., Brodie G., Jacob M.V. 2023. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review. Environmental Research. 226. https://doi.org/10.1016/j.envres.2023.115619
  • 3. Amer N.M., Lahijani P., Mohammadi M., Mohamed A.R. 2022. Modification of biomass-derived biochar: a practical approach towards development of sustainable CO2 adsorbent. Biomass Convers. Biorefin. https://doi.org/10.1007/s13399-022-02905-3
  • 4. Aoac C. 2005. Official methods of analysis of the association of analytical chemists international. Official Methods: Gaithersburg, MD, USA.
  • 5. Campbell R., Xiao B., Mangwandi C. 2024. Production of activated carbon from spent coffee grounds (SCG) for removal of hexavalent chromium from synthetic wastewater solutions. Journal of Environmental Management. 366. https://doi.org/10.1016/j.jenvman.2024.121682
  • 6. Cha J., Park S., Jung S.C., Ryu C., Jeon J.K., Shin M.C., Park Y.K. 2016. Production and Utilization of Biochar: A Review. Journal of Industrial and Engineering Chemistry. 40, 1–15. https://doi.org/10.1016/j.jiec.2016.06.002
  • 7. Chhandama M.V.L., Chetia A.C., Satyan K.B., Supongsenla Ao, Ruatpuia J.VL., Rokhum S.L. 2022. Valorisation of food waste to sustainable energy and other value-added products: a review. Bioresour. Technol. Reports. https://doi.org/10.1016/j.biteb.2022.100945
  • 8. Chen J., Liu Y., Liu J., Duan Q., Wang Z., Song J., Ji C., Jiahao. 2024. Effects of carbonization on the structure and sorption properties of coffee grounds for Pb(II) and Ni(II) in various metal systems. Desalination and Water Treatment. 320. https://doi.org/10.1016/j.dwt.2024.100623
  • 9. Cherno N.K., Krusir G.V. 1992. Acid-base and ion-exchange properties of dietary fibers. Applied Biochemistry and Microbiology. 28(2), 297–303.
  • 10. Cherno N.K., Krusir G.V., Kovalenko O.V. 2010. [Biocorrectors of digestive processes: monograph]. Odesa: ONAFT. (in Ukrainian).
  • 11. García-Prats M., Olivera-Begué E., González D., Sánchez A. 2024. Biochar: An emerging 2(3), 120– 126. https://doi.org/10.1016/j.wmb.2024.07.003
  • 12. Gosalvitr P., Cuéllar-Franca R.M., Smith R., Azapagic A. 2024. Environmental and economic sustainability assessment of the production and consumption of different types of coffee in the UK. Sustainable Production and Consumption. 49, 144–162. https://doi.org/10.1016/j.spc.2024.06.004
  • 13. Ihoeghian N.A., Amenaghawon A.N., Ogofure A., Oshoma C.E., Ajieh M.U., Erhunmwunse N.O., Obuekwe I.S., Edosa V.I.O., Tongo I., Emokaro C., Ezemonye L.I.N., Semple K.T., Martin A.D. 2023. Biochar-facilitated batch co-digestion of food waste and cattle rumen content: An assessment of process stability, kinetic studies, and pathogen fate. Green Technologies and Sustainability. 1(3), 100035. https://doi.org/10.1016/j.grets.2023.100035
  • 14. Ioelovich M. 2022. Features of water vapor sorption by cellulose materials. World Journal of Advanced Research and Reviews. 13(3), 254–263. https://doi.org/10.30574/wjarr.2022.13.3.0233
  • 15. Jara P., Schoeninger V., Dias L., Siqueira V., Lourente E. 2022. Physicochemical quality characteristics of buckwheat flour. Engenharia Agrícola. 42(4). https://doi.org/10.1590/1809-4430-Eng.Agric.v42n4e20210026/2022
  • 16. Kim S., Kim J.-C., Kim Y.Y., Yang J.E., Lee H.M., Hwang I.M., Park H.W., Kim H.M. 2024. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Science of The Total Environment. 912, 169521. https://doi.org/10.1016/j.scitotenv.2023.169521
  • 17. Krusir G., Sagdeeva O., Malovanyy M., Shunko H., Gnizdovskyi O. 2020. Investigation of enzymatic degradation of solid winemaking wastes. Journal of Ecological Engineering. 21(2), 72–79. https://doi.org/10.12911/22998993/116345
  • 18. Laos-Espinoza J., Juaneda-Ayensa E., García-Milon A., Olarte-Pascual C. 2024. Why do you want an organic coffee? Self-care vs. world-care: A new SOR model approach to explain organic product purchase intentions of Spanish consumers. Food Quality and Preference. 118, 105203. https://doi.org/10.1016/j.foodqual.2024.105203
  • 19. Li S., Skelly S. 2023. Physicochemical properties and applications of biochars derived from municipal solid waste: A review. Environmental Advances. 13, 100395. https://doi.org/10.1016/j.envadv.2023.100395
  • 20. Odeyemi S.O., Iwuozor K.O., Emenike E.C., Odeyemi O.T., Adeniyi A.G. 2023. Valorization of waste cassava peel into biochar: An alternative to electrically-powered process. Total Environment Research Themes. 6, https://doi.org/10.1016/j.totert.2023.100029
  • 21. Pambudi S., Saechua W., Jongyingcharoen J.S. 2024. A thermogravimetric assessment of eco-friendly biochar from oxidative torrefaction of spent coffee grounds: Combustion behavior, kinetic parameters, and potential emissions. Environmental Technology & Innovation. 33. https://doi.org/10.1016/j.eti.2023.103472
  • 22. Parthasarathy P., Alherbawi M., Shahbaz M., Al-Ansari T., McKay G. 2023. Developing biochar from potential wastes in Qatar and its revenue potential. Energy Conversion and Management: X, 20, 100467. https://doi.org/10.1016/j.ecmx.2023.100467
  • 23. Pillsbury D.M., Kulchar G.V. 1934. The use of the Hagedorn-Jensen method in the determination of skin glucose. Journal of Biological Chemistry. 106(1), 351– 356. https://doi.org/10.1016/S0021-9258(18)75485-9
  • 24. Premchand P., Demichelis F., Chiaramonti D., Bensaid S., Fino D. 2022. Study on the effects of carbon dioxide atmosphere on the production of biochar derived from slow pyrolysis of organic agro-urban waste. Waste Management. 172, 308–319. https://doi.org/10.1016/j.wasman.2023.10.035
  • 25. Sharma A., Pareek V., Zhang D. 2015. Biomass pyrolysis – A review of modelling, process parameters and catalytic studies. Renewable and Sustainable Energy Reviews. 50(9), 1081–1096. https://doi.org/10.1016/j.rser.2015.04.193
  • 26. Yaashikaa P.R., Kumar P., Varjani S., Anbalagan S. 2019. Advances in production and application of biochar from lignocellulosic feedstocks for remediation of environmental pollutants. Bioresource Technology. 292, 122030. https://doi.org/10.1016/j.biortech.2019.122030
  • 27. Zhang M., Song X., Deines T.W., Pei Z.J., Wang D. 2024. A consistency mapping for the effects on enzymatic hydrolysis sugar yield using two sugar yield definitions in cellulosic biofuel manufacturing. Renewable Energy 62, February 2014, 243– 248. https://doi.org/10.1016/j.renene.2013.07.014
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88d28e60-efb6-4070-bb1e-a9cd51b32fa3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.