PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biomass delignification with green solvents towards lignin valorisation: ionic liquids vs deep eutectic solvents

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of renewable resources as feedstocks to ensure the production of goods and commodities for society has been explored in the last decades to switch off the overexploited and pollutant fossil-based economy. Today there is a strong movement to set bioeconomy as priority, but there are still challenges and technical limitations that must be overcome in the first place, particularly on biomass fractionation. For biomass to be an appellative raw material, an efficient and sustainable separation of its major components must be achieved. On the other hand, the technology development for biomass valorisation must follow green chemistry practices towards eco-friendly processes, otherwise no environmental leverage over traditional petrochemical technologies will be acquired. In this context, the application of green solvents, such as ionic liquids (ILs) and deep eutectic solvents (DES), in biomass fractionation is envisaged as promising technology that encompasses not only efficiency and environmental benefits, but also selectivity, which is a crucial demand to undertake cascade processes at biorefinery level. In particular, this article briefly discusses the disruptive achievements upon the application of ILs and DES in biomass delignification step towards an effective and selective separation of lignin from polysaccharides. The different physicochemical properties of these solvents, their interactions with lignin and their delignification capacity will be scrutinized, while some highlights will be given to the important characteristics of isolated lignin fractions for further valorisation. The advantages and disadvantages between ILs and DES in biomass delignification will be contrasted as well along the article.
Twórcy
  • CECOLAB - Collaborative Laboratory Towards Circular Economy R. Nossa Senhora da Conceição, 3405-155 Oliveira do Hospital, Portugal
  • CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
Bibliografia
  • [1] S.S. Hassan, G.A. Williams, A.K. Jaiswal, Lignocellulosic Biorefineries in Europe: Current State and Prospects, Trends Biotechnol. 37 (2019) 231–234. https://doi.org/10.1016/j.tibtech.2018.07.002.
  • [2] J.H. Clark, Green biorefinery technologies based on waste biomass, Green Chem. 21 (2019) 1168–1170. https://doi.org/10.1039/c9gc90021g.
  • [3] P. Gurria, T. Ronzon, S. Tamosiunas, R. Lopez, S. Garcia Condado, J. Guillen, N.E. Cazzaniga, R. Jonsson, M. Banja, G. Fiore, R. M’Barek, Biomass flows in the European Union: The Sankey biomass diagram-towards a cross-set integration of biomass, 2017. https://ec.europa.eu/jrc/en/publication/biomass-flows-european-union-sankey-biomass-diagram-towards-cross-set-integration-biomass.
  • [4] J. Cai, Y. He, X. Yu, S.W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, A. V. Bridgwater, Review of physicochemical properties and analytical characterization of lignocellulosic biomass, Renew. Sustain. Energy Rev. 76 (2017) 309–322. https://doi.org/10.1016/j.rser.2017.03.072.
  • [5] J.C. Del Río, J. Rencoret, A. Gutiérrez, T. Elder, H. Kim, J. Ralph, Lignin Monomers from beyond the Canonical Monolignol Biosynthetic Pathway: Another Brick in the Wall, ACS Sustain. Chem. Eng. 8 (2020) 4997–5012. https://doi.org/10.1021/acssuschemeng.0c01109.
  • [6] M. Kuhlberg, T. Särkkä, J. Uusivuori, Technological Transformation in the Global Pulp and Paper Industry: Concluding Remarks, in: Springer, 2018: pp. 279–282. https://doi.org/10.1007/978-3-319-94962-8_13.
  • [7] J. Wang, L. Wang, D.J. Gardner, S.M. Shaler, Z. Cai, Towards a cellulose-based society: opportunities and challenges, Cellulose. 28 (2021) 4511–4543. https://doi.org/10.1007/s10570-021-03771-4.
  • [8] P. Bajpai, Pulp and Paper Industry: Energy Conservation, Elsevier B.V., 2016. https://doi.org/10.1016/C2014-0-02105-3.
  • [9] D. Khatiwada, S. Leduc, S. Silveira, I. McCallum, Optimizing ethanol and bioelectricity production in sugarcane biorefineries in Brazil, Renew. Energy. 85 (2016) 371–386. https://doi.org/10.1016/j.renene.2015.06.009.
  • [10] Z. Sun, B. Fridrich, A. De Santi, S. Elangovan, K. Barta, Bright Side of Lignin Depolymerization: Toward New Platform Chemicals, Chem. Rev. 118 (2018) 614–678. https://doi.org/10.1021/acs.chemrev.7b00588.
  • [11] B.M. Upton, A.M. Kasko, Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective, Chem. Rev. 116 (2016) 2275–2306. https://doi.org/10.1021/acs.chemrev.5b00345.
  • [12] M.M. Abu-Omar, K. Barta, G.T. Beckham, J.S. Luterbacher, J. Ralph, R. Rinaldi, Y. Román-Leshkov, J.S.M. Samec, B.F. Sels, F. Wang, Guidelines for performing lignin-first biorefining, Energy Environ. Sci. 14 (2021) 262–292. https://doi.org/10.1039/d0ee02870c.
  • [13] T. Welton, Ionic liquids: a brief history, Biophys. Rev. 10 (2018) 691–706. https://doi.org/10.1007/s12551-018-0419-2.
  • [14] D. Zhao, Y. Liao, Z.D. Zhang, Toxicity of ionic liquids, Clean - Soil, Air, Water. 35 (2007) 42–48. https://doi.org/10.1002/clen.200600015.
  • [15] S. Tsuchitani, T. Fukutake, D. Mukai, H. Miki, K. Kikuchi, Unstable Spreading of Ionic Liquids on an Aqueous Substrate, Langmuir. 33 (2017) 11040–11046. https://doi.org/10.1021/acs.langmuir.7b01799.
  • [16] A.P. Abbott, G. Capper, D.L. Davies, R.K. Rasheed, V. Tambyrajah, Novel solvent properties of cholinę hloride/urea mixtures, Chem. Commun. 1 (2003) 70–71. https://doi.org/10.1039/b210714g.
  • [17] M.A.R. Martins, S.P. Pinho, J.A.P. Coutinho, Insights into the Nature of Eutectic and Deep Eutectic Mixtures, J. Solution Chem. 48 (2019) 962–982. https://doi.org/10.1007/s10953-018-0793-1.
  • [18] D.O. Abranches, M.A.R. Martins, L.P. Silva, N. Schaeffer, S.P. Pinho, J.A.P. Coutinho, Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type v des, Chem. Commun. 55 (2019) 10253–10256. https://doi.org/10.1039/c9cc04846d.
  • [19] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114 (2014) 11060–11082. https://doi.org/10.1021/cr300162p.
  • [20] Y.A. Elhamarnah, M. Nasser, H. Qiblawey, A. Benamor, M. Atilhan, S. Aparicio, A comprehensive review on the rheological behavior of imidazolium based ionic liquids and natural deep eutectic solvents, J. Mol. Liq. 277 (2019) 932–958. https://doi.org/10.1016/j.molliq.2019.01.002.
  • [21] M. Hayyan, M.A. Hashim, A. Hayyan, M.A. Al-Saadi, I.M. AlNashef, M.E.S. Mirghani, O.K. Saheed, Are deep eutectic solvents benign or toxic?, Chemosphere. 90 (2013) 2193–2195. https://doi.org/10.1016/j.chemosphere.2012.11.004.
  • [22] A. Paiva, R. Craveiro, I. Aroso, M. Martins, R.L. Reis, A.R.C. Duarte, Natural deep eutectic solvents - Solvents for the 21st century, ACS Sustain. Chem. Eng. 2 (2014) 1063–1071. https://doi.org/10.1021/sc500096j.
  • [23] I.P.E. Macário, F. Jesus, J.L. Pereira, S.P.M. Ventura, A.M.M. Gonçalves, J.A.P. Coutinho, F.J.M. Gonçalves, Unraveling the ecotoxicity of deep eutectic solvents using the mixture toxicity theory, Chemosphere. 212 (2018) 890–897. https://doi.org/10.1016/j.chemosphere.2018.08.153.
  • [24] Z.-L. Huang, B.-P. Wu, Q. Wen, T.-X. Yang, Z. Yang, Deep eutectic solvents can be viable enzyme activators and stabilizers, J. Chem. Technol. Biotechnol. 89 (2014) 1975–1981. https://doi.org/10.1002/jctb.4285.
  • [25] K. Radošević, M. Cvjetko Bubalo, V. Gaurina Srček, D. Grgas, T. Landeka Dragičević, R.I. Redovniković, Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents, Ecotoxicol. Environ. Saf. 112 (2015) 46–53. https://doi.org/10.1016/j.ecoenv.2014.09.034.
  • [26] X.-D.D. Hou, Q.-P.P. Liu, T.J. Smith, N. Li, M.-H.H. Zong, Evaluation of Toxicity and Biodegradability of Cholinium Amino Acids Ionic Liquids, PLoS One. 8 (2013) e59145. https://doi.org/ARTN e59145 DOI 10.1371/journal.pone.0059145.
  • [27] I.A. Kilpeläinen, H. Xie, A. King, M. Granstrom, S. Heikkinen, D.S. Argyropoulos, Dissolution of wood in ionic liquids, J. Agric. Food Chem. 55 (2007) 9142–9148. https://doi.org/10.1021/jf071692e.
  • [28] S.P. Magalhães da Silva, A.M. da Costa Lopes, L.B. Roseiro, R. Bogel-Łukasik, Novel pre-treatment and fractionation method for lignocellulosic biomass using ionic liquids, RSC Adv. 3 (2013) 16040–16050. https://doi.org/10.1039/c3ra43091j.
  • [29] A.M. da Costa Lopes, R.M.G.G. Lins, R.A. Rebelo, R.M. Lukasik, R.M. Łukasik, Biorefinery approach for lignocellulosic biomass valorisation with an acidic ionic liquid, Green Chem. 20 (2018) 4043–4057. https://doi.org/10.1039/c8gc01763h.
  • [30] A.M. da Costa Lopes, M. Brenner, P. Falé, L.B. Roseiro, R. Bogel-Łukasik, Extraction and Purification of Phenolic Compounds from Lignocellulosic Biomass Assisted by Ionic Liquid, Polymeric Resins, and Supercritical CO2, ACS Sustain. Chem. Eng. 4 (2016) 3357–3367. https://doi.org/10.1021/acssuschemeng.6b00429.
  • [31] A.M. da Costa Lopes, K.G. João, A.R.C. Morais, E. Bogel-Łukasik, R. Bogel-Łukasik, Ionic liquids as a tool for lignocellulosic biomass fractionation, Sustain. Chem. Process. 1 (2013) 3. https://doi.org/10.1186/2043-7129-1-3.
  • [32] A. Brandt, J.P. Hallett, D.J. Leak, R.J. Murphy, T. Welton, The effect of the ionic liquid anion in the pretreatment of pine wood chips, Green Chem. 12 (2010) 672–67. https://doi.org/10.1039/b918787a.
  • [33] M. Zavrel, D. Bross, M. Funke, J. Büchs, A.C. Spiess, High-throughput screening for ionic liquids dissolving (ligno-)cellulose, Bioresour. Technol. 100 (2009) 2580–2587. https://doi.org/10.1016/j.biortech.2008.11.052.
  • [34] A.M. da Costa Lopes, K.G. João, D.F. Rubik, E. Bogel-Łukasik, L.C. Duarte, J. Andreaus, R. Bogel-Łukasik, Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation, Bioresour. Technol. 142 (2013) 198–208. https://doi.org/10.1016/j.biortech.2013.05.032.
  • [35] M.T. Clough, K. Geyer, P.A. Hunt, S. Son, U. Vagt, T. Welton, Ionic liquids: Not always innocent solvents for cellulose, Green Chem. 17 (2015) 231–243. https://doi.org/10.1039/c4gc01955e.
  • [36] M.T. Clough, K. Geyer, P.A. Hunt, J. Mertes, T. Welton, Thermal decomposition of carboxylate ionic liquids: Trends and mechanisms, Phys. Chem. Chem. Phys. 15 (2013) 20480–20495. https://doi.org/10.1039/c3cp53648c.
  • [37] E.C. Achinivu, R.M. Howard, G. Li, H. Gracz, W.A. Henderson, Lignin extraction from biomass with protic ionic liquids, Green Chem. 16 (2014) 1114–1119. https://doi.org/10.1039/c3gc42306a.
  • [38] C.L.B. Reis, L.M.A. e. Silva, T.H.S. Rodrigues, A.K.N. Félix, R.S. de Santiago-Aguiar, K.M. Canuto, M.V.P. Rocha, Pretreatment of cashew apple bagasse using protic ionic liquids: Enhanced enzymatic hydrolysis, Bioresour. Technol. 224 (2017) 694–701. https://doi.org/10.1016/j.biortech.2016.11.019.
  • [39] E.G.A. Rocha, T.C. Pin, S.C. Rabelo, A.C. Costa, Evaluation of the use of protic ionic liquids on biomass fractionation, Fuel. 206 (2017) 145–154. https://doi.org/10.1016/j.fuel.2017.06.014.
  • [40] A. Brandt-Talbot, F.J.V. Gschwend, P.S. Fennell, T.M. Lammens, B. Tan, J. Weale, J.P. Hallett, An economically viable ionic liquid for the fractionation of lignocellulosic biomass, Green Chem. 19 (2017) 3078–3102. https://doi.org/10.1039/c7gc00705a.
  • [41] F.J.V. Gschwend, L.M. Hennequin, A. Brandt-Talbot, F. Bedoya-Lora, G.H. Kelsall, K. Polizzi, P.S. Fennell, J.P. Hallett, Towards an environmentally and economically sustainable biorefinery: heavy metal contaminated waste wood as a low-cost feedstock in a low-cost ionic liquid process, Green Chem. 22 (2020) 5032–5041. https://doi.org/10.1039/d0gc01241f.
  • [42] A. Ovejero-Pérez, V. Rigual, J.C. Domínguez, M.V. Alonso, M. Oliet, F. Rodriguez, Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus wood using the protic ionic liquid 1-methylimidazolium chloride, Int. J. Biol. Macromol. 157 (2020) 461–469. https://doi.org/10.1016/j.ijbiomac.2020.04.194.
  • [43] M.M. Hossain, A. Rawal, L. Aldous, Aprotic vs protic ionic liquids for lignocellulosic biomass pretreatment: Anion effects, enzymatic hydrolysis, solid-state NMR, distillation, and recycle, ACS Sustain. Chem. Eng. 7 (2019) 11928–11936. https://doi.org/10.1021/acssuschemeng.8b05987.
  • [44] Uju, A. Nakamoto, Y. Shoda, M. Goto, W. Tokuhara, Y. Noritake, S. Katahira, N. Ishida, C. Ogino, N. Kamiya, Low melting point pyridinium ionic liquid pretreatment for enhancing enzymatic saccharification of cellulosic biomass, Bioresour. Technol. 135 (2013) 103–108. https://doi.org/10.1016/j.biortech.2012.06.096.
  • [45] N. Sathitsuksanoh, K.M. Holtman, D.J. Yelle, T. Morgan, V. Stavila, J. Pelton, H. Blanch, B.A. Simmons, A. George, Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production, Green Chem. 16 (2014) 1236–1247. https://doi.org/10.1039/c3gc42295j.
  • [46] J.Y. Kim, E.J. Shin, I.Y. Eom, K. Won, Y.H. Kim, D. Choi, I.G. Choi, J.W. Choi, Structural features of lignin macromolecules extracted with ionic liquid from poplar wood, Bioresour. Technol. 102 (2011) 9020–9025. https://doi.org/10.1016/j.biortech.2011.07.081.
  • [47] J.L. Wen, S.L. Sun, B.L. Xue, R.C. Sun, Quantitative structures and thermal properties of birch lignins after ionic liquid pretreatment, J. Agric. Food Chem. 61 (2013) 635–645. https://doi.org/10.1021/jf3051939.
  • [48] J.L. Wen, T.Q. Yuan, S.L. Sun, F. Xu, R.C. Sun, Understanding the chemical transformations of lignin during ionic liquid pretreatment, Green Chem. 16 (2014) 181–190. https://doi.org/10.1039/c3gc41752b.
  • [49] A. Brandt, L. Chen, B.E. Van Dongen, T. Welton, J.P. Hallett, Structural changes in lignins isolated using an acidic ionic liquid water mixture, Green Chem. 17 (2015) 5019–5034. https://doi.org/10.1039/c5gc01314c.
  • [50] F.J.V. Gschwend, C.L. Chambon, M. Biedka, A. Brandt-Talbot, P.S. Fennell, J.P. Hallett, Quantitative glucose release from softwood after pretreatment with low-cost ionic liquids, Green Chem. 21 (2019) 692–703. https://doi.org/10.1039/c8gc02155d.
  • [51] M. Francisco, A. Van Den Bruinhorst, M.C. Kroon, New natural and renewable low transition temperaturę mixtures (LTTMs): Screening as solvents for lignocellulosic biomass processing, Green Chem. 14 (2012) 2153–2157. https://doi.org/10.1039/c2gc35660k.
  • [52] CEPI, Unfold the future. The Two Team Project, 2013.
  • [53] A.K. Kumar, B.S. Parikh, M. Pravakar, Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue, Environ. Sci. Pollut. Res. 23 (2016) 9265–9275. https://doi.org/10.1007/s11356-015-4780-4.
  • [54] C.W. Zhang, S.Q. Xia, P.S. Ma, Facile pretreatment of lignocellulosic biomass using deep eutectic solvents, Bioresour. Technol. 219 (2016) 1–5. https://doi.org/10.1016/j.biortech.2016.07.026.
  • [55] Z. Chen, C. Wan, Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment, Bioresour. Technol. 250 (2018) 532–537. https://doi.org/10.1016/j.biortech.2017.11.066.
  • [56] C. Alvarez-Vasco, R. Ma, M. Quintero, M. Guo, S. Geleynse, K.K. Ramasamy, M. Wolcott, X. Zhang, Unique low-molecular-weight lignin with high purity extracted from wood by deep eutectic solvents (DES): A source of lignin for valorization, Green Chem. 18 (2016) 5133–5141. https://doi.org/10.1039/c6gc01007e.
  • [57] X.J. Shen, J.L. Wen, Q.Q. Mei, X. Chen, D. Sun, T.Q. Yuan, R.C. Sun, Facile fractionation of lignocelluloses by biomass-derived deep eutectic solvent (DES) pretreatment for cellulose enzymatic hydrolysis and lignin valorization, Green Chem. 21 (2019) 275–283. https://doi.org/10.1039/c8gc03064b.
  • [58] F.H.B. Sosa, D.O. Abranches, A.M. Da Costa Lopes, J.A.P. Coutinho, M.C. Da Costa, Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 8 (2020) 18577–18589. https://doi.org/10.1021/acssuschemeng.0c06655.
  • [59] J.L.K. Mamilla, U. Novak, M. Grilc, B. Likozar, Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals, Biomass and Bioenergy. 120 (2019) 417–425. https://doi.org/10.1016/j.biombioe.2018.12.002.
  • [60] D. Smink, A. Juan, B. Schuur, S.R.A. Kersten, Understanding the Role of Choline Chloride in Deep Eutectic Solvents Used for Biomass Delignification, Ind. Eng. Chem. Res. 58 (2019) 16348–16357. https://doi.org/10.1021/acs.iecr.9b03588.
  • [61] A.M. Da Costa Lopes, J.R.B. Gomes, J.A.P. Coutinho, A.J.D. Silvestre, Novel insights into biomass delignification with acidic deep eutectic solvents: A mechanistic study of β-O-4 ether bond cleavage and the role of the halide counterion in the catalytic performance, Green Chem. 22 (2020) 2474–2487. https://doi.org/10.1039/c9gc02569c.
  • [62] K.H. Kim, T. Dutta, J. Sun, B. Simmons, S. Singh, Biomass pretreatment using deep eutectic solvents from lignin derived phenols, Green Chem. 20 (2018) 809–815. https://doi.org/10.1039/c7gc03029k.
  • [63] B. Soares, A.J.D. Silvestre, P.C. Rodrigues Pinto, C.S.R. Freire, J.A.P. Coutinho, Hydrotropy and Cosolvency in Lignin Solubilization with Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 7 (2019) 12485–12493. https://doi.org/10.1021/acssuschemeng.9b02109.
  • [64] B. Soares, D.J.P. Tavares, J.L. Amaral, A.J.D. Silvestre, C.S.R. Freire, J.A.P. Coutinho, Enhanced Solubility of Lignin Monomeric Model Compounds and Technical Lignins in Aqueous Solutions of Deep Eutectic Solvents, ACS Sustain. Chem. Eng. 5 (2017) 4056–4065. https://doi.org/10.1021/acssuschemeng.7b00053.
  • [65] D.O. Abranches, J. Benfica, B.P. Soares, A. Leal-Duaso, T.E. Sintra, E. Pires, S.P. Pinho, S. Shimizu, J.A.P. Coutinho, Unveiling the mechanism of hydrotropy: Evidence for water-mediated aggregation of hydrotropes around the solute, Chem. Commun. 56 (2020) 7143–7146. https://doi.org/10.1039/d0cc03217d.
  • [66] B. Soares, A.M. da Costa Lopes, A.J.D. Silvestre, P.C. Rodrigues Pinto, C.S.R. Freire, J.A.P. Coutinho, Wood delignification with aqueous solutions of deep eutectic solvents, Ind. Crops Prod. 160 (2021) 113128. https://doi.org/10.1016/j.indcrop.2020.113128.
  • [67] Y. Wang, X. Meng, K. Jeong, S. Li, G. Leem, K.H. Kim, Y. Pu, A.J. Ragauskas, C.G. Yoo, Investigation of a lignin-based deep eutectic solvent using p-hydroxybenzoic acid for efficient woody biomass conversion, ACS Sustain. Chem. Eng. 8 (2020) 12542–12553. https://doi.org/10.1021/acssuschemeng.0c03533.
  • [68] Y.T. Tan, G.C. Ngoh, A.S.M. Chua, Effect of functional groups in acid constituent of deep eutectic solvent for extraction of reactive lignin, Bioresour. Technol. 281 (2019) 359–366. https://doi.org/10.1016/j.biortech.2019.02.010.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88cd36b4-11b6-4794-9173-4fecca4b798d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.