
B������� ��������� ������	
 ����
���������� 13 25–36 (2014)

25

A multifaceted model for software reliability prediction during testing

R. PE KA

radoslaw.pelka@wat.edu.pl

Institute of Computer and Information Systems

Faculty of Cybernetics, Military University of Technology

Kaliskiego Str. 2, 00-908 Warsaw, Poland

Analysis of software reliability plays an important role in quality assurance plan realization during software

development. By monitoring changes of evaluated reliability in relation to quality objectives it is possible

to analyze current situation in respect to agreed requirements and initiate appropriate actions when needed

to secure fulfilling of the goals. The use of software reliability growth models as the only method for reliability

evaluation seems to be too much simplified approach. Such approach, based solely on fault detection history,

may in some circumstances be risky and lead to significantly wrong decisions related to the software validation

process. Taking possible pros and cons into account the model described in this paper is proposed to use

a number of additional information concerning the software being tested and the validation process itself,

to produce more accurate outcomes from the reliability analysis. The produced outcome gives an appropriate

feedback for a decision makers, taking into account assumed software development process characteristic.

Integral part of the presented approach is devoted to reliability characteristics of a system being tested

in parallel by several independent teams.

Keywords: reliability, software, modeling, testing.

1. Introduction

Software reliability analysis plays an important

role in overall quality assurance plan in software

development process. Nowadays, when business

realities force companies to be more competitive

when it comes to faster deliveries of a new

software to the market, software reliability

remains a crucial factor which determines

the final success of a product. Such situation

provoke existence of a development process

optimization procedures that incorporate

reliability objectives as a main criteria. Such

approach may be potentially good but on

the other hand it may also be dangerous when

reliability findings are not proper. To make sure

that produced reliability evaluations can be rely

on, it is crucial to secure that the applied

methods allow to incorporate possibly large

range of important aspects related to software

verification process and system under testing as

such. This kind of approach is more demanding

for persons performing quality analysis because

it entails a need to collect, prepare and process

larger amount of data, compared to situation

when only software reliability growth models

(SRGMs) are used [1]. Successful application of

SRGMs has been proved many times [2].

Therefore, the approach proposed in this paper

incorporates use of an SRGM as a method for

software reliability prediction, however, taking

all the related disadvantages into account [3],

[4], additional extensions have been proposed.

The extensions are used to make it possible,

in a given moment of software validation

process, to produce more accurate outcomes for

a decisive persons, based on results provided by

SRGM but processed in accordance with taken

assumptions. The main goal for this version of

the model was to verify methods of information

synthesis and influence of such approach on

the quality and financial results of a software

development project execution when software

validation is supposed to be conducted under

strictly defined reliability objectives.

The subject of interest and research area for

the proposed approach are large systems

consisting of many functional modules,

implementing logic for various and complex

tasks. In case of such systems it is a common

situation that implementation of functional

extension to the software is performed

simultaneously by several development teams.

To a large extend the teams may work

independently of each other, practically up to

the final integration phase when effects of

their work are joined with system being prepared

for a customer. From software reliability

analysis point of view each such individual

process being realized by a single team is

important. As well, important is a main process

which consists of all the individual processes.

R���� aw Pe ka, A multifaceted model for software reliability prediction during testing

26

Taking into account the specificity of

software development process conducted

in the mentioned way, appropriate methods for

an individual process are described in chapters

2–6, and methods for a main process

are described in chapter 7. Chapter 8 contains

summary of the results of application of

the model in a real software development

project.

2. Software reliability evaluation

based on faults detection history

A starting point in the proposed model is to

evaluate software reliability, based on

information concerning history of faults

detection during system testing. For this purpose

the Musa and Okumoto software reliability

growth model [5], based on non-homogeneous

Poisson process theory, was used. This model

was selected due to proven effectiveness

in practical application and satisfactory level of

fit of the model to data representing history of

defects detection in the examined software.

In order to evaluate the fit of model to available

data, three criteria which are widely used for

the purpose of SRGMs comparative analysis [6]

can be applied. The criteria are the mean squared

errors (1), the predictive-ratio risk (2), and

Akaike’s information criterion (3).

 , (1)

where:

 – number of faults detected until time ;

 – time of i-th fault detection;

 – number of data concerning fault detection

times, ;Nu

 – number of model parameters;

 – expected cumulative number of faults

at time it , ui ,1 .

, (2)

where:

 – number of faults detected until time ;

 – time of i-th fault detection;

 – number of data concerning fault detection

times;

 – expected cumulative number of faults

at time , ����.

 , (3)

where:

 – number of model parameters;

L ������� �������!!" #�$%&�!$!#
the selected model.

The Musa-Okumoto model belongs to

the class of models with infinite number of

faults. Due to the form of the mean value

function (4) this model is classified as

logarithmic model. In such case intensity of

failures decreases exponentially, along with

detection of subsequent faults. Therefore,

tendency to detect more faults in the early phase

of testing is incorporated in the model.

 , (4)

where:

 – initial failure intensity;

 – rate of reduction in the normalized failure

intensity per failure, 0' .
For the Musa-Okumoto model appropriate

form of the maximum likelihood function (5),

required for Akaike’s criterion calculation, was

determined based on general form of Poisson

distribution probability density function.

…...

, (5)

where:

 – time of i-th fault detection;

 – time of u-th fault detection;

 – number of data concerning fault detection

times.

For a given moment in software validation

process appropriate values for and

parameters can be determined by estimators

based on maximum likelihood method.

Estimators obtained by this method are usually

characterized by at least consistency, asymptotic

normality and asymptotic efficiency. Having the

model parameters evaluated it is possible to

determine value of conditional reliability

function (6) for time period .

, (6)

where:

 ,

 is defined by (4).

()*+,-/0)01-/-*-* 1/1-,234)056728-/9:0/9; 13 25–36 (2014)

27

3. Reliability evaluation risk factor

When software reliability evaluation for a given

time horizon is determined, it is then a relevant

question how much the evaluation is credible

in context of the system under testing as such

and current stage of the validation process.

To be able to incorporate aspects that have

the potential to influence results of the ongoing

reliability analysis, a reliability evaluation risk

factor is proposed. The risk factor is supposed

to be built on information concerning risk of

reliability evaluations from a single module

perspective, together with information about

significance of the module from system

perspective (a module weight). The risk factor

is supposed to be a function of time, where time

is discretized, with step equal k. A step length

is a decision variable and can be set to e.g.

an hour, a day or a week. A step length shall be

set the way that its value corresponds to

the characteristic and pace of the validation

process realization. It should be relatively

shorter than whole planned validation period and

relatively longer than execution time of a single

test case.

Required information about risk from

a single module perspective is built on data

concerning test coverage and adequacy of

the number of faults detected in a module

compare to the expected value. The expected

number of faults for a given module is

determined based on historical data analysis,

taking into account scale of current development

project (7). It is assumed that continues

development of software from a system module,

by using the same programming paradigm

in each of the development projects, gives

enough argument to perceive the software as to

be homogeneous from reliability perspective.

In case of lack of information concerning faults

detected in a given module, the expected number

of faults can be determined by applying method

based on a program volume, proposed by

Halstead [7].

 , (7)

where:

– number of historical projects, ;

– number of faults in i-th module from j-th

historical project, , <<<<=<<<<<>
– number of new or modified lines of code

in i-th module from current project, , <<<<>

– number of new or modified lines of code

in i-th module from j-th historical project, , <<<< = <<<<<?
Equation (8) shows formula of the function

used to assess value of adequacy of the number

of faults detected in a given module, in a given

moment of the validation process (k), compare

to the expected value produced by formula (7).

The constant is a decisive variable whose

value shall express the belief of a decisive

person about importance of such a fact

that number of faults detected in a module differ

from the expected value. Value of constant

shall basically not exceed value 2. Higher values

lead to situation when even small deviation from

the expected value causes significant increase of

the risk factor value.

 , (8)

where:

,

 – expected number of faults for the i-th

module, <<<<@
 – number of faults detected in the i-th

module until end of k step, <<<<@
a – a constant influencing the shape of adequacy

function, .

Equation (9) shows formula of the risk

factor for a single i-th module modified in

current development project. The formula was

constructed the way that it takes into account

deviation of the number of faults detected in

a given module during software validation, from

the number of faults expected for this module.

It was assumed that as long as there are still

some planned but not executed test cases

that covers functionality provided by a given

module (note that 0 means 0% coverage while

1 means 100% coverage), value of the risk factor

for this module is always higher than zero.

When number of faults detected in a given

module differ from the expected value

determined based on historical data, the risk

factor value is additionally increased,

proportionally to the value of the adequacy

factor. For modules not modified in current

development project, the risk factor is assumed

to be equal zero.

 , (9)

ACDEF aw Pe ka, A multifaceted model for software reliability prediction during testing

28

where:

 – test coverage of the i-th module until

end of step, , GGGGH
 – number of modules in the system, .

To be able to determine necessary values of

weights of the modules, all the modules shall be

classified based on code complexity and

functional criticality analysis. This way,

appropriate weight value can be given for

particular class of modules. Equation (10)

is used to determine a numerical value reflecting

importance of i-th module from the system

reliability examination point of view.

 , (10)

where:

– complexity of i-th module, , GGGGH
 – functional criticality of i-th module,

, GGGGH
 – number of modules in the system, .

Appropriate values of functional criticality

() for all modules are determined by experts

having extensive knowledge about examined

system. The main criterion here is the impact of

a failure in a given module on overall ability

of the system to perform its tasks. The meaning

of particular values used for expression of

the functional criticality is as follows:

1 – high importance module;

2 – normal importance module;

3 – low importance module;

4 – auxiliary module.

Complexity of a given module ()

is determined based on a combination of selected

code complexity metrics. The selected metrics

shall be appropriate for the type of examined

code and shall be characterized by low level of

mutual correlation, to maximize effectiveness of

their use in the decisive process. In this research

the McCabe’s cyclomatic complexity [8]

and data flow complexity metrics were used.

The latter metric is represented by equation (11).

It is inspired by data flow complexity concept

presented by Henry and Kafura [9].

,

(11)

where:

 – number of interfaces incoming to module,

, GGGGI
 – number of interfaces outgoing from

module, , GGGGH
 – number of data incoming to module,

, GGGGH

 – number of data outgoing from module,

, GGGGH
 – number of permanent data maintained by

module, , GGGGH
 – number of modules in the system,

.

Each of the used metrics focuses on

different aspects of software engineering, thus

they characterize complexity of a given module

in a different manner. Due to that it is possible to

achieve relatively better evaluation of the overall

module complexity, compare to situation when

used metrics belong to the same class.

The overall complexity for a given module

is defined as a product of values given by single

metrics. Having the overall complexity

calculated for all the system modules,

all the values are then normalized to range [0, 1].

The results of normalization are then used as

module complexity in equation (10).

When values of the importance factor are

calculated for each of system module, based on

equation (10), the next step is to decide which of

the received values are going to be used as

thresholds for assigning the modules to different

classes. For this reason the received values

are first sorted from lowest to highest. Then, it is

decided how many percent of modules with the

lowest values belongs to the first class and how

many modules with the highest values belongs to

the third class. Value of the importance factor

calculated for a module which is the first one,

according to the determined order, that belongs

to the second class of modules constitutes

the first threshold value. Value of the importance

factor calculated for a module which is the last

one, according to the determined order,

that belongs to the second class of modules

constitutes the second threshold value. If by 1

we denote the first threshold value and by 2

the second threshold value, then appropriate

weight values for modules are determined by

the formula (12).

1 1

2 1 2

4 2

 , (12)

where:

n – number of module in the system, .

Form of the reliability evaluation risk factor

that is supposed to be used for the entire system

is finally defined by formula (13). It is defined

as weighted arithmetic mean of the individual

risk factors of system modules.

T
tJK JtJK MyaNtOa
faNtPrNOrrK
valuKwQtJ
SRGS
NPcNKtP UK
to ic
NaMK Q
QcUQvwQtJ

4. V
SoftWsXYXZ[
p\]^i_\X busu_Ys]`[WZ]dpqu_Yi[X_\YebX \Xs]`[WbXighj_[_
In s]^_\i]
stratX
jXZis
a cus[

k[] \X
a gi^
ig \XjX`ig
is jX[jX[XZ
ig [id[l_[lZ]jX
deteZ
ig [id[lX s
gX[n
in fih

moxz

{

|lX lihlX\ ilihlX\ is \is}es[Xd ugjX_Y \XYi_biYi[e~
\� j_[_ \XY_[Xg[jX^XY]pd
X is usXj ig `\XYi_biYi[e X^�� _s WXYY
X\gigh [lX se[X\digX ^_Yu
g[Xh_[i]g igi[is dX_g[[l
^iju_Y jX^XY[lX ses[Xd b
V���� ����
W_\X \XYi_bi[Xj ����ijXj be [lX \b_sXj]g]gYYYe _^_iY_bYXW_\X ^_Yij_[ipYX[XgXss pX\[e]` p\]juZpl_sX]` [lX_s]g_bYX []
W_\X jX^XY]ph _ \XsuY[]`

concerninh]`[W_\X jX^Xus ig`]\d_[iXhiZ jXZisii]g _b]u[j
[]dX\� is Xssk_uY[jXgsi[e`YXZ[[lX YX^^Xg d]dXg[
XspXZ[[] [l
gXj be _ jXZi
[X\digXj b_sZ[Xj ig [lX
dX� []hX[lX\l_^X bXXg ig[

d]ji`iZ_[i]Z[Xj `_uY[s i
dX~ |lX gudses[Xd is jX
���~ �[\uZ[u\
hu\X �~

z���� o���

� �
�
n

i
��{ �

is ^_YuX]` [
} [l_[\XYi_bi\ [Xs[igh _\X
 To calcula[
Xj [] [lX ddXg[p\]�XZ[
`u\[lX\ _g_Ye^_Yu_[i]gs p_s][lX\ Z
es[Xd ugjX\uX]` [lX d_[
jiZ_[]\~ �el_[d]juYXsY]pdXg[p\]bXigh p\Xp_\X
���� �����
iYi[e X^_Yu_[

�� []hX[lX\\XYi_biYi[e X^Ye p_\[]` ^_X `]\ _ jXZii]g p\]ZXss~\spXZ[i^X _sZXj]u[Z]dXX ^_Yij_[i]g p_jji[i]g_YYe
pdXg[p\]Z
experts opig

h [lX ses[XXY]pdXg[p\i]g [l_[d_e
i]gs pX\spjXYi^X\e]`sXg[i_Y ig []je _jXqu_Ze^XY]` `_uY[
in software

lX `_uY[jX
isi^X pX\s]g~
sXj]g gudbs]`[W_\X _[Wi[l p\XjiZ[[\]juZXj ig[]
]g~ |lX guis }g]Wg _[
dbX\]` `_uX[X\digXj b\X]` [lX us

���x�x ���
� �

�ni i

ii

w

kh�
�

[lX \is} `_Z[]
iYi[e p\XjiZ[ig][_jXqu_[[X ^_YuX]` [

d]juYXs d]j
are used.
esis WlX\X� [\]juZXj be sZ\uZi_Y ig`]\
\ [Xs[igh� i[[u\i[e _gj \X
ig[Xh_[i]g

modified in

]ZXss _\XXj `]\ _ Zus[]
��¡� ¢�¡�£¤
[i]g p\]juZ
Wi[l ig`]_Yu_[i]g \is}_Yu_bYX ig`]\si^X pX\s]g~ k\]d [lX

well as to ids� XspXZi_YYep\]ZXss� i[sXusX j_[_ \XYXss _s suZl
gi]gs _gj liXd ugjX\\]ZXss seg[le bX ^_Yu_bYXZ[i^X� Xsp_ `ig_Y p\]j
_e¥s \X_Yi[e~
facto\ is sujXgsi[e \X_Z^_Yij_[i]g p

Xgsi[e \Xqui\¦_YuX]` [lX
bX\]` `_uY[s[_ hi^Xg dXj gudbX\]
] [lX ses[XdudbX\]`[_ hi^Xg d
uY[s ig[\]juZbe usX]` _Xj gX[is p\

���§¨© o�

ª�«¬

]\ ª�«¬�
i]gs `]\[X [] i[s[lX \is}
ified in

 b[_igXj
[]hX[lX\sXYXZ[Xj
\d_[i]g
is used

X_jigXss
in this

a given

merged

]dX\~
¤
ZXj be
\d_[i]g} `_Z[]\�\d_[i]g
during

model

dp\]^Xe ju\ighXXds []Y_[Xj []l� j_[_is[]\iZ_Y
testing.

lXsis]`YX `\]d
pXZi_YYejuZ[[]
upp]sed

ZlXj _[p\]ZXss�
\XdXg[sX `_Z[]\
already

d]dXg[]` `_uY[s
d ju\igh

already

d]dXg[
ed into

_ �_eXs\XsXg[Xj

[
ij
i[
s
p[
igs
_j
gu

[̂
_

W­Z
j
®
[
®[̄
i
_]g
ps
_j

°±²§³��´

°µ¶· ¸· �¹º»¼»½¾¿º
The nu

[lX ses[Xd
ig`]\d_[i]gjX^XY]pdXg[is g][jXsZXg[lX gX[s[\uspXZi`iXj bep\]�XZ[WliZ[lX \Xd_igigig`]\d_[i]gg]jXs [] _s[\uZ[u\X~ À
_\X Zl__Zjis[\ibu[i]g~gudbX\]` `usXj ig `u\[lÀ[_
^_Yij_[i]g p\[lX s]`[W_\X
_ZZ]\jigh []

WlX\XÁ­ Â sZ_YX `_Z]jX YigXs u
jXgsi[e \Xqui®Ã – expectX
[lX ses[XdÄ
®Å – numbe\[idX s[XpÄ¯ Â gudbX\]
ig Zu\\Xg[jXk]\ [lX
_g _ssudp[i]]` `_uY[s _[gXW ^X\si]g
p]ssibYX [l_[s]dX YXh_Z
_\X \X^X_YXjjX[XZ[Xj ug[

´Æ��´Ç 13 È

»É¹»º¿ ÊË Ì mÌÊË ËÌ»Í¹Î µ¼¹ºÊ
udbX\]`

is made

concern

[p\]ZXss~ k
gj_g[]` _geuZ[u\X� _pp

experts wo\Zl is bXigh
gh g]jXs _\p\]^ijXj behi^Xg g]jXÀYY]WXj ^_Y[X\iÏXj beÐX[X\digX`_uY[s ig[\]julX\ _g_Yesis~
given mod
\]ZXss� [lX ZX ugjX\ [Xs
`]\duY_ ª�Ñ

ÒÓo

_Z[]\Ä \Xp\XsusXj _s _ b
i\XdXg[Ä Xj gudbX\]
\]` `_uY[s `]
]` gXW]\ d]X^XY]pdXg[p
pu\p]sX]`]g is [_}Xg [[lX d]dXgg]` ses[Xd
[ju\igh s]`[Ze� p\X^i]uj~ |l_[¥s Wl
iY Xgj]` _ h

ÈÔÕÖ× ØÈÙ¸ÚÛ

ÌÜ¿Î ¼¿¹ »Î¿Ý ¹ÊÝ»É¿Ý µ¼¹Ê ¹Þ¿
`_uY[s ig[\]jXpXgjXg[
ing the

k]\ _ gX[g][lX\ g]jX�
ropriate vaY
\}igh ig [lX j
h Xß_digXj~
\X jX[X\digXe g]jXs WliZX� _ZZ]\jighYuXs `]\ sue sui[_bYXXj [lis W_uZXj ig[] [l
dXg[ig [l
Zu\\Xg[`_uY[s[igh Z_g bÑ¬~

L

bbÒ ào ,

sXg[s gudbX
b_sX `]\ jX
]` `_uY[s ig[\
]ugj ug[iY Xg
]ji`iXj s]u\Z
p\]�XZ[~

fault densite
[l_[[lX s]`[g[WlXg jX^Xd s[_\[s~ á]W
`[W_\X ^_Yij_usYe ug}g]le i` gudb
hi^Xg [idX s[

Èâ

¹Ê ¿ãÌÍ»Ì¹¿¿ ÎÜÎ¹¿½
]juZXj ig[]]g sXYXZ[Xj

s]`[W_\X
g]jX WliZl_ZZ]\jigh []YuX Z_g bXjX^XY]pdXg[¦_YuXs `]\Xj b_sXj]gZl _\X p_\Xg[h [] [lX gX[uZl _ g]jXp\]b_biYi[e
_e XßpXZ[XjlX ses[Xd is
lX s]`[W_\X[jXgsi[e `]\bX X^_Yu_[Xj

ª�Ñ¬

X\]` s]u\ZXX`igigh `_uY[
\]juZXj ig[]
gj]` _ hi^Xg
ZX Z]jX YigXs
e X^_Yu_[i]g[W_\X is `\XXXY]pdXg[]`WX^X\� i[is
_[i]g p\]ZXss]Wg `_uY[s
bX\]` `_uY[s[Xp is lihlX\

â

]j
X
l
]X
[
\
g[[
Xe
js
X
\j

¬

X
[
]
g
s
gX
s̀
ss
s
\

äåæçè aw Pe ka, A multifaceted model for software reliability prediction during testing

30

than the expected number of faults then fault

density is assumed to be equal zero.

Having the software fault density evaluated

it is then possible to determine value of the fault

density adequacy factor . As a main

reference the value of required fault density

is used which, together with tolerance between

value required and value achieved, is defined by

a decisive person. The fault density adequacy

factor takes values from range [0,1], with step

which equals 0.1. Value 1 in this case means

that achieved fault density is equal or lower

than the required one. Based on the defined

tolerance the subsequent fault density thresholds

are determined. The defined tolerance reflects

a ten percent threshold which, when crossed,

results in value of the fault density adequacy

factor decreased by 0.1, until it reaches 0. If by

we denote the required fault density and by

the tolerance between value required and value

achieved, then appropriate value of the fault

density adequacy factor can be determined by

the formula (15). Decided this way value

of the factor is used later to determine value of

the maturity and readiness to integration

indicator.

ééé
ê
ééé
ëì íîïð ñ

 (15)

5. Maturity and readiness to

integration indicator

Presented model introduces concept of

a maturity and readiness to integration indicator

which is supposed to be used as a guidance for

a decisive person when decisions about

integration of modified software modules with

system that is being prepared for a customer

are taken. Meaning of the indicator is directly

related to development methodology applied for

the system under testing. The way value for

the indicator is determined is characterized by

synthesis of information of different type,

to finally provide a single value appropriate for

a decisive process. In the presented model

the decision that is supposed to be taken during

validation process lies in the fact to agree or not

agree on integration of modified software

modules with system that is being prepared for

a customer, based on the defined reliability

objectives. By applying the presented approach

the risk of taking wrong decision, that is decision

to integrate modified modules while the software

under testing has not reached appropriate level

of its reliability, is reduced. It is assumed

that reliability of examined software is a priority

criterion for the decisive person.

The maturity and readiness to integration

indicator expresses, by a percentage value,

the level of fulfilling the requirement for

software reliability defined by a decisive person.

Value of the indicator for a given moment of

software validation process is determined in the

following way. The software reliability objective

defined by a decisive person constitutes a level

which, when reached, means 100% fulfillment

of the requirement. First step is to compare

software reliability evaluated by the selected

SRGM, in case of this research by model Musa-

Okumoto described in chapter 2, with level

defined as the objective, to get preliminary level

of the requirement fulfillment. For instance,

when objective is set to 0.8 and evaluated

reliability is 0.6 then the preliminary level

is 75%. Then, it is assumed that the preliminary

level can be treated as the final one when there

are no symptoms showing that value of

the evaluated software reliability might not be

proper. By the symptoms the counted values of

the reliability evaluation risk factor (13)

and the fault density adequacy factor (15)

are meant. It is assumed that when product

ò óô ó ô ókAkH gõö÷ equals 1 then the reliability

evaluated by the selected SRGM is the final one

and so the percentage value related to

the evaluated reliability constitutes value of

the maturity and readiness to integration

indicator. Otherwise, that is when the above

product is less than 1, appropriate percentage

value to be used as the maturity and readiness to

integration indicator value is counted by

a proportional reduction in the percentage value

corresponding to the evaluated software

reliability. For instance, when the product gives

0.4 and previously counted preliminary level is

75% then the maturity and readiness to

integration indicator gets value 30%.

6. Cost function

Taking into account economic side of software

development project, in particular costs related

to realization of software validation process

and maintenance of the product on customer

side, the proposed model introduces as well

øùúûüýþÿ ùÿBýþýúýú BþBýü��� ùÿ�����ýþ��ÿþ�	 13 25–36 (2014)

31

a cost function (16). The function allows to keep

track of changes concerning overall costs for

the ongoing project, taking into account real data

available at a given moment in software

validation process as well as predicted data

concerning future. The cost aspect introduces

additional limitation imposed on the main plan

aiming to produce software with satisfying level

of reliability but within decided budget.

Therefore, together with quality analysis there is

also cost analysis being performed for system

under testing.

 , (16)

where:

 – current time (corresponds to end of time

step k);

– additional time;

 – number of faults detected until end of

time step ;

 – predicted number of faults until end

of time ;

 – predicted overall cost until end

of time ;

– cost of single fault removal during software

validation;

 – cost of conducting software validation

during a single time step ();

– cost of single fault removal during

software utilization by a customer.

Naturally, cost of fault removal when fault

is detected by a customer is much higher than

cost that needs to be incurred when fault

removal takes place during software validation.

It is assumed that cost of conducting

the validation process as such is not negligible.

By inclusion of this cost into analysis it is

possible to judge whether to continue

the validation process or not. It might be

important especially in case when the quality

goals have almost been met while budget limits

are already or closely reached. The number of

faults detected until end of time step k is known

at a given moment when cost calculation takes

place. The number of faults detected until

additional time x passes is predicted by

the selected SRGM. In case of this research it is

model Musa-Okumoto described in chapter 2.

7. Reliability characteristics for

software parallel validation

In case of developing a big scale system it is

possible that many small production processes

coexist and are realized, to the large extend,

independently of each other by many

development teams. Form the final product

perspective it is however necessary to be able to

monitor interesting characteristics for the main

production process which aims to create a new

version of the system.

Considering validation process which is

being realized by a team involved in a single

production process, two separable states can be

defined, representing situation in which the

process at a given moment in time can be. The

first used state indicates searching for faults

while the second one indicates fixing faults. This

fact was used to describe a validation process

together with relevant reliability characteristics.

The following assumptions were taken:

times between consecutive faults detection

are independent random variables with

the same probability distribution,

faults detection as well as faults fixing

intensity remain constant during examined

time intervals and are the same for all

independent validation processes of

independent production processes; the

intensity values are initially decided by

domain experts, based on development

teams characteristics, planned tasks

characteristics, as well as development

methodology; values of the intensities may

be changed due to new evaluations based on

fault detection and fault fixing information

from the already finished time intervals,

the number of testing teams is constant,

equals the number of independent

development processes, and each of

the individual validation processes can be in

one of two possible states – searching for

faults or fixing a fault.

In case of individual validation process

a state machine with two states is applied.

Analysis of such process can be based on

stochastic process theory, in particular theory of

Markov process with continuous time and

discrete set of states [11]. It was assumed

that time of being in particular state of

the process is characterized by exponential

probability distribution with known value of

parameter reflecting intensity with which

the process leaves a state. Probability density for

variables which represent time of being in fault

detection state and time of being in fault fixing

state are described by equations (17) and (18)

respectively.

 , (17)

where:

 – fault detection intensity in individual

validation process.

R
��
 aw Pe ka, A multifaceted model for software reliability prediction during testing

32

 (18)

where:

 – fault fixing intensity in individual validation

process.

From the main process perspective at

a given moment in time some of the running

in parallel individual processes are in fault

detection state and some are in fault fixing state.

Based on that fact it is possible to define a set of

states for the main process, where state denoted

as k means that currently k among all of

the individual processes are in fault fixing state,

whereas remaining n-k processes are in fault

detection state. A Markov chain state diagram

for the main process, which is a time-

homogeneous Markov chain with finite state

space, is presented in figure 2.

Fig. 2. Markov chain state diagram for the main

process

A transition intensities between states in

the main process are determined based on

a feature of random variable distribution where

the variable is defined as a minimum of

independent exponentially distributed random

variables. The feature tells that this way defined

random variable is also characterized by

exponential distribution with parameter which is

a sum of parameters from distributions of

the random variables which are arguments of

the minimum function.

A time to leave a state in the main process

depends only on the current state of the process

and is characterized by exponential distribution

with parameter dependent on the current state.

Probability density for random variable

which represents time of being in state k of

the main process is expressed by equation (19).

,

 (19)

where:

 – total number of individual processes

constituting the main process;

 – number of individual processes being in fault

fixing state;

 – number of individual processes being

in fault detection state;

 – intensity of fault detection in individual

validation process;

 – intensity of fault fixing in individual

validation process.

Value of probability of state k to state k–1

transition and value of probability of state k to

state k+1 transition in the main process is

determined based on equations (20) and (21)

respectively.

 , (20)

 . (21)

An unconditional probability of being in

a given state of the main process is determined

based on equation (22) which is a result of

transformation of the Markov chain balance

equation.

 (22)

Time to find a fault when the main process

is in a given state can be defined as a recursive

relation (23). The equation incorporates value of

time to find a fault for preceding state.

 , (23)

where:

 – random variable which expresses time to

find a fault while the process is in state k;

 – random variable which expresses time of

being in state k;

k

���

�� �� � �� � ����

���

�� � ����� � ���

�� � ����� � �� � ����

�� � ����� � �� � ����

0

�

� ��

�� �� � ���

n��

�� � �����

�� �

!"#$%&'("()&'&#&#)')&%*+, "(-./*1&'23('24 13 25–36 (2014)

33

 – random variable which expresses time to

find a fault while the process is in state 156 .

Probability distribution for the variable

can be determined by computing a convolution

of probability densities of independent random

variables which are components of the sum in

equation (23). Based on Borel’s convolution

theorem, equation (24) is determined by

applying Laplace transform and further

simplifying transformations.

,

 (24)

where:

 – Laplace transform of probability density

function which expresses time to find

a fault while the main process is in a given state;

 – Laplace transform of probability density

function which expresses time of being in

a given state.

An absolute time to find a fault, irrespective

of a state in which the main process currently

resides, is determined based on equation (25).

 (25)

By applying Laplace transform for equation

(25) and using equation (24) finally equation

(26) is received.

 (26)

The moment generation feature of Laplace

transform or an inverse transform calculation

can be used to get formulas that are used to

determine expected value (27) and variance (28)

of time to find next fault in the main process.

 (27)

(28)

8. Model verification

Presented in previous chapters approach to

software reliability verification during validation

process was practically applied on data collected

during realization of a real software

development process which aimed to enhance

functional capabilities of a complex, real-time

system. Four independent teams were working

on new version of the system, implementing

separate functionalities. Therefore, from

the proposed model perspective there were four

individual production processes for which

reliability analysis with use of maturity

and readiness to integration indicator as well as

cost function was performed. Also the method of

determining reliability characteristics for

a software under parallel testing performed by

multiple teams was verified.

To get evaluations for Musa-Okumoto

model parameters, current intensity of faults

and expected number of software faults

in a given time perspective, the SMERFS3

application was used as a tool which has proved

its usefulness in software reliability researches

[12].

Analysis of importance of system modules,

necessary to determine weights of the modules

and then the reliability evaluation risk factor

value, shown that the applied complexity metrics

in combination with functional criticality of

a module are very effective in terms of ability to

project the real situation in the evaluated system.

Among forty seven modules, ten of them got

weight 4, nine of them got weight 1 and the rest

of modules got weight 2. Such a result also

reflects reasonable architecture of the evaluated

system in terms of program structure.

The length of a time step used during

analysis was 24 hours. For each time step values

of used factors were updated based on

information concerning progress and results of

the validation process. Picture 3 presents

waveform of a function reflecting changes of

values of the reliability evaluation risk factor

over all 65 time steps for one of the individual

processes, with two different values of

the constant from equation (8). Value 1,15

reflects quite low believe of a decisive person

about the significance of deviation between

number of faults expected and number of faults

discovered, while value 1,5 reflects rather

serious believe about such a fact. As can be seen

from the picture, in the latter case the counted

values of H(k) automatically expresses higher

level of uncertainty about the evaluated software

reliability and the wave is less linear due to

34

longer perio

s7o879:

Fig. ;

The N

has proved

probability

the Bayes <

e=>7?>@e <

@te soA@8>r

Aorf?7>s @o

p>r>fe@ers

the nodes C

oA D<@roE?

Arof tFs@o

@te eGpeH@e

A>?7@sI @te A

e>Ht @Ffe s@

Ee<sF@9 >Ee

Jt><Kes oA

s@eps Aor o<

CproHess LM

Fig.

Analys

>pp79F<K F<

@te re7F>b

@te se7eH@eE

@te f>@?rF

F<EFH>@or 8

NOPQS aw PeT

oE 8te< @te

;U NVWXOYXWXZ[V

vOW\V

etica applic>

F@s ?seA?7<es

F<Aere<He i

<e@ prese<@eE

<?fber oA

e ?<Eer @es@

o be ?seE

of probab

C]roE?HeE J

?HeE c>?7@sM

orFH>7 pro^eH

eE <?fber

A>?7@ Ee<sF@9

@ep ><E o< @t

eq?>H9 A>H@o

A =>7?e oA @t

<e oA @te F<E

I Fs prese<@eE

_U `O\WZ PVaS

vOW\V

sFs >FfF<K

<@o @te Ee

bF7F@9 e=>7?

E dghj ><E

F@9 ><E re

8>s perAorfe

TlO, A multifa

rFsm A>H@or =

VvOW\OZXQa uXSl

wxOayVS

>@Fo<I beF<K

ss F< rese>rH

13], was us

E F< AFK?re z

A>?7@s F<@r

F<K: {o b?F7

@o Ee@erfF<

bF7F@9 EFs@rF

JoEe dF|eM >

MI re7e=><@

H@s 8ere ?

oA F<@roE?H

=>7?e 8>s ?

tFs b>sFs =>7?

or }z~� 8>s

te A>H@or o=e

EF=FE?>7 proH

E F< AFK?re L:

XZ[OPV�\Ow[

changes

to compare

eHFsFo< f>m

?>@Fo<s pr

E @te F<EFH>@F

e>EF<ess @o

eE 8eem79:

����� ����� ��

=>7?e reE?He

l �OwZQu

a tool whict

tes req?FrF<K

seE @o Hre>@

zI F< orEer @o

oE?HeE F<@o

7@ >pproprF>@

<e =>7?es o

Fb?@Fo<s Ao

><E C�?fbe

F<Aorf>@Fo<

seE: �>=F<K

HeE soA@8>r

?pE>@eE >A@e

?e oA @te A>?7

Ee@erfF<eE

er >77 �~ @Ff

HessesI H>77eE

:

factor

e res?7@s o

mF<K proHes

roE?HeE b9

Fo<s KF=e< b9

F<@eKr>@Fo<

�@ @te s>f

��� �������� ��

s

t

K

e

o

o

e

oA

or

er

<

K

e

er

7@

E:

e

E

oA

s

9

9

<

e

time a7

Hos@s 8

Ht><Ke

@o F<@eK

>pp7FH>

@te HF

soA@8>

HrF@erFo

EeHFsFo

cor o<

pro7o<K

@te f>

re>HteE

L�� t

to red?

@Ffe to

@te A>?

@te pro

H>< be

Arof

additio

{t

Ee@erf

Ht>p@er

>ppro>

cF

s@epsI

a par

{te p

Aorf?7

proE?H

Aor @te

chapter

b9 eGp

Ho<s@><

} = 0I

Ee@erf

8>s >

@te p

}8eem7

the cQ

As it c

is mos

���������� ����

7re>E9 F<H?rr

8ere @r>HmeE

es }z��: �se

Kr>@Fo< F<EFH

>@Fo< oA

FrH?fs@><Hes

>re re7F>bF7F@

o< ?seE b9 >

o<s F< soA@

<e oA @te >

K>@Fo< oA @

>@?rF@9 ><E r

E s>@FsA>H@or

FKter <?fbe

?He b9 @t>@ @t

orF|o< b9 >7f

?7@s @t>@ Ho?

o7o<KeE perF

e @re>@eE >s

the formu7

o<>7 @Ffe x is

te fe@toE

fF<>@Fo< Aor @

r �I pro=eE

>Ht:

FK?re ~ prese

oA =>7?es oA

r@FH?7>r s@>@

prob>bF7F@Fes

7> }���: �s

H@Fo< proHess

f>F< proHes

r �: �eHess>

per@s 8ormF<

<@ >7o<K

I���Lz�: �e

fF<eE b>seE o

> s?b^eH@ @

p7><<eE re

79�I see @>b7e

Tab. 1. ValuV

QaSVw\ZXvV uVWX

���� ¡�¢

7

14

21

28

35

42

49

56

63

65

an be seen Ar

s@ prob>b7e

������£ �¤��£¥

reE Hos@s >s

EI b>seE o<

of the mat?

H>@or pro=eE

such a

s 8te< 7e=

@9 Fs @re>@e

> EeHFsF=e pe

A@8>re Ee=e

><>79|eE F<E

@te =>7FE>@Fo

re>EF<ess @o

r9 7e=e7I e<>

er oA A>?7@s F<

te o=er>77 Ho

fos@ ���: D@

?7E t>=e bee

FoE oA @te =

a predicted

7> }z�� pe

s s?AAFHFe<@79

of reliabilF

@te f>F< pro

?seA?7<ess

e<@s Ht><Kes

A @te prob>b

@e oA @te

were deter

@tere 8ere

sesI @tere 8er

ssI >HHorEF<K

>r9 =>7?e oA

<K Aor > pr

@te =>7

eHess>r9 =>

o< A>?7@s Ee@

@o ?pE>@e

e7F>bF7F@9 >

1.

VS Q� ¦OuO§VZV

XOYXWXZ[OaOW[S

¨©ª

Arof AFK?re ~

@t>@ <o<e

�����£¥

8e77 >s AoreH

@te Hos@ A?<

?rF@9 ><E re>E

p?rposeA?7<

fe@toE

=e7 oA >Ht

eE >s > H

erso< @o f>m

e7opfe<@ pr

EF=FE?>7 proH

o< proHess

integration

>b7eE @o re=e

< @te soA@8>r

os@ F< @te pro^

@ 8>s >ss?fe

< Ee@eH@eE E

>7FE>@Fo< pr

<?fber oA

erspeH@F=eI

7o<K e:K: > 9

F@9 Ht>r>H@e

oHessI prese<

oA @te EesH

sI o=er >77 �~

bF7F@Fes oA beF

f>F< pr

rfF<eE b>se

e Ao?r F<EF=

re ~ s@>@es Ee

K @o prF<HFp7e

« was deterf

ro^eH@ ><E F

7FE>@Fo< pr

>7?e oA

@eH@Fo< E>@>

before eaH

<>79sFs ses

Vu used for

SXS ¬VVlW[SVS

­

0.000989

0.000585

0.000378

0.000316

0.000229

0.00022

0.00021

0.000171

0.000131

0.000129

~I >s @Ffe p>s

oA @te F<EF=

H>s@eE

<H@Fo<

EF<ess

<ess oA

under

tFe=eE

Hr?HF>7

me me9

ro^eH@:

Hesses

until

factor

e>7 b9

re ><E

^eH@eE

eE @t>@

E?rF<K

roHess

faults

when

9e>r:

ristics

<@eE F<

HrFbeE

~ @Ffe

F<K F<

ocess.

eE o<

=FE?>7

eAF<eE

e Arof

fF<eE

@ 8>s

roHess

was

and it

Ht oA

ssFo<s

sions

sses F@

=FE?>7

proc®

¯°±²®

³´°µ

¶

·

²¸®¹²

expe¯

³°´µº

¸»® ²¸

´°°¸ °

¸° ³°´

¼± ³°

¯°º±¸

½¾

¿± ²º

ÀÁ ¼±

¼² ´®¹

¸»® ²

was ¾

³¼±Â

succ®

³¾¯¸ °

¼± ¸»®

Ã

¸°

the

that

simil¾

Äº²¾

Å¹¹´

¾² “Ä
À®¸½®

¹´°¯®

ÆÇÈÉ

®²²®² ¼² ¼± ³¾º

®Êº®±¯® °³ ®

¸»® ²°³¸½¾´®

¶ËÌÍ ÎÍ ÈÏÐÑÏÒ

ÓÔÕÖËÐ×ØÔÕ

·¼Ùº´® Ú ¹´®

Û °³ Ü¾Ýº® °

¯¸®Â Ü¾Ýº® Þ

ßàá âãäåæ

çáèéáêé éëìí

îï çðë ìáêíáè

êñßàá âãòåó

îêñßàáô âãäå

çëé õáôëé îè

áô áôôßñëé

ßöð öáôëæ çðë

èìëêôë îï çðë

÷êëôëèçëé õø

econd powë

á ùèîúè ìáà

èëûç ïáßàç

ëôôíìëàø àîèü

îï öîèçíèßîß

ë ôîïçúáêëó

ýø öîñ÷áêíè

ïáßàç éëçëö

ëûáñíèëé ÷

á÷÷àíëé ñë

áê çî á÷÷êîû

áþÿùßñîçîæ

êîûíñáçíîè õ

Mþÿ âá÷êîû

ëëè öîèôëößç

ëôô íô éëôöêíõ

LE��� ����

ßàç ïíûíèü ôçá

àíñíèáçíîè î

ëó

di�i���	
����

� ���
 �� ��
 m

v�	�
 �����

ëôëèçô öðáèüë

îï çðë çíñë

�â(åæ éëçëêñ

íèöàßéíèü

ation D(Y),

èöë câ(å éë

cáàßëô îï �

å áèé âãòå

è çðë ïáöç çð

çî õë ëû÷îè

ë ëû÷ëöçëé ì

êáçë ÷áêáñëç

íèìëêôë îï çð

ëêó cáàßë îï

àßëó uô íç úá

íè çðë ñ

üëê áèé àîè

ßô êëéßöçíîè

èü êëöëíìëé

öçíîè ëû÷ë

÷êîöëôô �â(

ëçðîé üëèëê

ûíñáçíîè ÷ë

úðáç íô éë÷

õø Mßôáþÿùß

ûå)ó �ðë êë

çíìë ïáßàçô éë

õëé áô “TBF

���Y�Y ���

áçëæ úðáç íô á

îï öîèôëößçíì

��i	i�b �� �
i��

m�i�
���

ëôæ îìëê áàà 6

çî ïáßàç éë

ñíèëé áööîêé

áàôî ìáàß

öîßèçëé áô á

ëçëêñíèëé áöö

�âXj) and V(X

êëô÷ëöçíìëàø

ðáç êáèéîñ ì

èëèçíáààø éíôçê

ìáàßë íô êë÷ê

çëê áèé çðë ì

ðë êáçë ÷áêáñ

çðë êáçë ÷áê

áô ëû÷ëöçëé

ñáíè ÷êîöëô

èüëêæ êëïàëöçí

îï èßñõëê î

êëôßàçô îï çð

ëöçëé ìáàßë

(åæ íç çßêè

êáçëô êëôßàç

ëêïîêñëé õø

÷íöçëé íè ïíü

ßñîçî íô éë

ëáà îõôëêìëé

ëçëöçíîè íè çð

ñáíè ÷êîöëô

��ET�� ��

á àîüíöáà

ìë ïáßàçô

� i�

65 çíñë

ëçëöçíîè

éíèü çî

ßë îï

á ô�ßáêë

öîêéíèü

Xj) used

øæ úëêë

ìáêíáõàë

êíõßçëéó

êëôëèçëé

ìáêíáèöë

ñëçëê çî

êáñëçëê

time to

ôô úáô

íèü çðë

îï ïáßàçô

ðë çíñë

ëô ïîê

ed out

çô ìëêø

model

üßêë äó

ëôöêíõëé

é çíñëô

ðë ñáíè

ôô)ó

9

P

÷

ö

ê

á

ç

ë

á

á

u

ñ

ê

ç

ï

ê

FO�T���C

Fi�� �� �im

m

Fi�� �� �im

9. Sum�

Pêî÷îôëé ñî

÷êáöçíöáà á÷÷

öîèôíôçíèü î

êëàáçëé íèïîê

áàôî ÷ëêô÷ëö

çðë ÷êî÷îôë

ëûáñíèáçíîè

áççëèçíîè ôð

á÷÷àíöáçíîè î

uô úëààæ áè

ñëçðîé ïîê

êëáéíèëôô çî

çáùëèó �ðáç

ïßêçðëê êëôë

êëàíáõíàíçø ëû

CZ��C� 13 2

�� ���	� d
�
�

m�i�
���
 v

�
�!

� ���

��
 m�i�

�a"#

îéëà ôðîúëé

÷àíöáõíàíçø ïî

îï çëôç êëàáç

êñáçíîèó Pëê

öçíìëô ïîê ÷î

ëé á÷÷êîáöð

foê öîñ÷à

ðáàà õë ÷ß

îï çðë ñëçðî

attempt to

ê éëçëêñíèí

integration

áêë çðë ÷

ëáêöðëô îè

ûáñíèáçíîèó

2$%&� '2*+,-

��i��
t

��
d

v�	�
 �����

���iv
 ���	�

�
���

é êëáôîèáõàë

îê çðë áèáàøz

çëé áô úëàà

êïîêñëé áèá

çëèçíáà íñ÷êî

çî ôîïçúáê

ëû ôøôçëñôó

ßç îè çðë

d described í

éëìëàî÷ ñî

èü çðë ñ

indicator vá

÷êëïëêêëé éíê

çðë ïíëàé î

&$

d v�	�
 i� ��

 d
�
��i�� i�

results of itô

zëé éáçá ôëç

à áô ôøôçëñ

áàøôíô ôðîúô

îìëñëèçô îï

êë êëàíáõíàíçø

uééíçíîèáà

êëôßàçô îï

íè öðá÷çëê äó

îêë öîñ÷àëû

áçßêíçø áèé

áàßë íô çî õë

êëöçíîèô ïîê

îï ôîïçúáêë

$

ô

ç

ñ

ô

ï

ø

à

ï

ó

û

é

ë

ê

ë

R/013 aw Pe ka, A multifaceted model for software reliability prediction during testing

36

10. Bibliography

[1] R. Pe ka, “Software reliability growth

models”, Biuletyn Instytutu Systemów

Informatycznych, Nr 10, 19–29 (2012).

[2] M.R. Lyu, Handbook of software relia-

bility, IEEE Computer Society Press, 1996.

[3] A.L. Goel, “Software Reliability Models:

Assumptions, Limitations and

Applicability”, IEEE Transactions on

Software Engineering, 12 (1985).

[4] N.E. Fenton, “A Critique of Software

Defect Prediction Models”, IEEE Tran-

sactions on Software Engineering, 5 (1999)

[5] J.D. Musa, K. Okumoto, “A Logarithmic

Poisson Execution Time Model for

Software Reliability Measurement”, IEEE,

1984.

[6] H. Pham, System Software Reliability,

Springer-Verlag, 2006.

[7] S.H. Khan, Metrics and Models in Software

Quality Engineering, Addison Wesley,

2002.

[8] T.J. McCabe, “A Complexity Measure”,

IEEE Transactions on Software

Engineering, 1976.

[9] S. Henry, D. Kafura, “Software Structure

Metrics Based on Information Flow”, IEEE

Transactions on Software Engineering,

1981.

[10] N. Fenton, M. Neil, The use of Bayes and

causal modeling in decision making,

uncertainty and risk, 2011.

[11] B. Korzan, Procesy stochastyczne i teoria

odnowy, WAT, 1986.

[12] D.R. Wallace, “Practical Software

Reliability Modeling”, Software

Engineering Workshop 200, Proceedings

26 Annual NASA Goddard, NASA Goddard

Space Flight Center, 2001.

[13] W. Cao, J. Ding, H. Wang, “Analysis of

Sequence Flight Delay and Propagation

Based on the Bayesian Networks”, Fourth

International Conference on Natural

Computation, ICNC 2008.

Wieloaspektowy model predykcji niezawodno ci oprogramowania

w procesie testowania

R. PE KA

Badanie niezawodno ci oprogramowania stanowi istotn cz realizacji planu jako ciowego w procesie

produkcji oprogramowania. Poprzez monitorowanie zmian warto ci prognozowanej niezawodno ci

oprogramowania w odniesieniu do za o onych celów jako ciowych mo na dokonywa analizy bie cej

sytuacji oraz w razie konieczno ci podejmowa kroki sprzyjaj ce realizacji za o onego planu. Wykorzystanie

w celu predykcji niezawodno ci jedynie modeli wzrostu niezawodno ci oprogramowania, bazuj cych na

historii wykrywania b dów w badanym oprogramowaniu, wydaje si by podej ciem zbyt uproszczonym.

Podej cie to w pewnych okoliczno ciach realizacji procesu walidacji oprogramowania mo e by obarczone

du ym b dem i wp ywa na podejmowanie b dnych decyzji przez decydenta. W zwi zku z tym,

w zaproponowanym modelu wykorzystuje si szereg dodatkowych informacji o testowanym oprogramowaniu

oraz samym procesie walidacji w celu uzyskania bardziej wiarygodnych efektów analizy niezawodno ciowej,

b d cych jednocze nie odpowiedni informacj zwrotn dla decydenta z punktu widzenia za o onych realiów

prowadzenia projektu programistycznego. Integraln cz prezentowanego podej cia stanowi aspekt

wyznaczania charakterystyk niezawodno ciowych systemu testowanego równolegle przez kilka niezale nych

zespo ów.

S owa kluczowe: niezawodno , oprogramowanie, modelowanie, testowanie.

