BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

A multifaceted model for software reliability prediction during testing

R. PELKA
radoslaw.pelka@wat.edu.pl

Institute of Computer and Information Systems
Faculty of Cybernetics, Military University of Technology
Kaliskiego Str. 2, 00-908 Warsaw, Poland

Analysis of software reliability plays an important role in quality assurance plan realization during software
development. By monitoring changes of evaluated reliability in relation to quality objectives it is possible
to analyze current situation in respect to agreed requirements and initiate appropriate actions when needed
to secure fulfilling of the goals. The use of software reliability growth models as the only method for reliability
evaluation seems to be too much simplified approach. Such approach, based solely on fault detection history,
may in some circumstances be risky and lead to significantly wrong decisions related to the software validation
process. Taking possible pros and cons into account the model described in this paper is proposed to use
a number of additional information concerning the software being tested and the validation process itself,
to produce more accurate outcomes from the reliability analysis. The produced outcome gives an appropriate
feedback for a decision makers, taking into account assumed software development process characteristic.
Integral part of the presented approach is devoted to reliability characteristics of a system being tested

in parallel by several independent teams.

Keywords: reliability, software, modeling, testing.

1. Introduction

Software reliability analysis plays an important
role in overall quality assurance plan in software
development process. Nowadays, when business
realities force companies to be more competitive
when it comes to faster deliveries of a new
software to the market, software reliability
remains a crucial factor which determines
the final success of a product. Such situation
provoke existence of a development process
optimization procedures that incorporate
reliability objectives as a main criteria. Such
approach may be potentially good but on
the other hand it may also be dangerous when
reliability findings are not proper. To make sure
that produced reliability evaluations can be rely
on, it is crucial to secure that the applied
methods allow to incorporate possibly large
range of important aspects related to software
verification process and system under testing as
such. This kind of approach is more demanding
for persons performing quality analysis because
it entails a need to collect, prepare and process
larger amount of data, compared to situation
when only software reliability growth models
(SRGMs) are used [1]. Successful application of
SRGMs has been proved many times [2].
Therefore, the approach proposed in this paper
incorporates use of an SRGM as a method for
software reliability prediction, however, taking

all the related disadvantages into account [3],
[4], additional extensions have been proposed.
The extensions are used to make it possible,
in a given moment of software validation
process, to produce more accurate outcomes for
a decisive persons, based on results provided by
SRGM but processed in accordance with taken
assumptions. The main goal for this version of
the model was to verify methods of information
synthesis and influence of such approach on
the quality and financial results of a software
development project execution when software
validation is supposed to be conducted under
strictly defined reliability objectives.

The subject of interest and research area for
the proposed approach are large systems
consisting of many functional modules,
implementing logic for various and complex
tasks. In case of such systems it is a common
situation that implementation of functional
extension to the software is performed
simultaneously by several development teams.
To a large extend the teams may work
independently of each other, practically up to
the final integration phase when effects of
their work are joined with system being prepared
for a customer. From software reliability
analysis point of view each such individual
process being realized by a single team is
important. As well, important is a main process
which consists of all the individual processes.

25

Radostaw Petka, 4 multifaceted model for software reliability prediction during testing

Taking into account the specificity of
software development process conducted
in the mentioned way, appropriate methods for
an individual process are described in chapters
2-6, and methods for a main process
are described in chapter 7. Chapter 8 contains
summary of the results of application of
the model in a real software development
project.

2. Software reliability evaluation
based on faults detection history

A starting point in the proposed model is to
evaluate software reliability, based on
information concerning history of faults
detection during system testing. For this purpose
the Musa and Okumoto software reliability
growth model [5], based on non-homogeneous
Poisson process theory, was used. This model
was selected due to proven -effectiveness
in practical application and satisfactory level of
fit of the model to data representing history of
defects detection in the examined software.
In order to evaluate the fit of model to available
data, three criteria which are widely used for
the purpose of SRGMs comparative analysis [6]
can be applied. The criteria are the mean squared
errors (1), the predictive-ratio risk (2), and
Akaike’s information criterion (3).

u N—v:]12
MSE — lel[m(tl) yl] . (1)
u—-N

where:

y; — number of faults detected until time ¢;;

t; — time of i-th fault detection;

u — number of data concerning fault detection
times, u > N;

N — number of model parameters;

m(t;) — expected cumulative number of faults

attime ¢, i =Lu.

_yu (mD-yi)?

where:

y; — number of faults detected until time ¢;;

t; — time of i-th fault detection;

u — number of data concerning fault detection
times;

m(t;) — expected cumulative number of faults
attimet; ,i = 1,u.

26

AIC =2q —2In(L) , 3)
where:
q — number of model parameters;
L — maximum likelihood function of

the selected model.

The Musa-Okumoto model belongs to
the class of models with infinite number of
faults. Due to the form of the mean value
function (4) this model is classified as
logarithmic model. In such case intensity of
failures decreases exponentially, along with
detection of subsequent faults. Therefore,
tendency to detect more faults in the early phase
of testing is incorporated in the model.

m(t) = Boln(Bit +1), 4)
where:

1

B1 = A0

Ao — initial failure intensity;
0 — rate of reduction in the normalized failure
intensity per failure, € > 0.

For the Musa-Okumoto model appropriate
form of the maximum likelihood function (5),
required for Akaike’s criterion calculation, was
determined based on general form of Poisson
distribution probability density function.

L’(BOI Blltl, tz,
— BoIn(Bity, +1) = X In(Byit; + 1), 5)

where:

t; — time of i-th fault detection;

t,, — time of u-th fault detection;

u — number of data concerning fault detection
times.

For a given moment in software validation
process appropriate values for S, and f;
parameters can be determined by estimators
based on maximum likelihood method.
Estimators obtained by this method are usually
characterized by at least consistency, asymptotic
normality and asymptotic efficiency. Having the
model parameters evaluated it is possible to

) =ulnfy +ulnpy —

determine value of conditional reliability
function (6) for time period t + x.

_R(t+x) [But+1]30
R(x|t) = RO marosl 0 ©
where:

R() = e™® |

m(t) is defined by (4).

BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

3. Reliability evaluation risk factor

When software reliability evaluation for a given
time horizon is determined, it is then a relevant
question how much the evaluation is credible
in context of the system under testing as such
and current stage of the validation process.
To be able to incorporate aspects that have
the potential to influence results of the ongoing
reliability analysis, a reliability evaluation risk
factor is proposed. The risk factor is supposed
to be built on information concerning risk of
reliability evaluations from a single module
perspective, together with information about
significance of the module from system
perspective (a module weight). The risk factor
is supposed to be a function of time, where time
is discretized, with step equal k. A step length
is a decision variable and can be set to e.g.
an hour, a day or a week. A step length shall be
set the way that its value corresponds to
the characteristic and pace of the validation
process realization. It should be relatively
shorter than whole planned validation period and
relatively longer than execution time of a single
test case.

Required information about risk from
a single module perspective is built on data
concerning test coverage and adequacy of
the number of faults detected in a module
compare to the expected value. The expected
number of faults for a given module is
determined based on historical data analysis,
taking into account scale of current development
project (7). It is assumed that continues
development of software from a system module,
by using the same programming paradigm
in each of the development projects, gives
enough argument to perceive the software as to
be homogeneous from reliability perspective.
In case of lack of information concerning faults
detected in a given module, the expected number
of faults can be determined by applying method
based on a program volume, proposed by

Halstead [7].
Y Yij]

% [Ll i1 Yij
where:
m — number of historical projects, meN;
yij — number of faults in i-th module from j-th
project, y;; ENU{0}, i=1mn,

(7

historical
j=1m;
L; — number of new or modified lines of code
in i-th module from current project, L;eN,
i=1,n;

Y;j — number of new or modified lines of code
in i-th module from j-th historical project, Y;;eN,
i=Tn,j=1m

Equation (8) shows formula of the function
used to assess value of adequacy of the number
of faults detected in a given module, in a given
moment of the validation process (k), compare
to the expected value produced by formula (7).
The constant a is a decisive variable whose
value shall express the belief of a decisive
person about importance of such a fact
that number of faults detected in a module differ
from the expected value. Value of constant a
shall basically not exceed value 2. Higher values
lead to situation when even small deviation from
the expected value causes significant increase of
the risk factor value.

a%®, when d;(k) <0

> (8
a~%®), when d;(k) =0 ®)

Ay(k) = {

where:
d; (k) = o; — p°,

0; — expected number of faults for the i-th
module, i = 1,n;

pl.(k) — number of faults detected in the i-th

module until end of k step, i = 1,7;
a — a constant influencing the shape of adequacy
function, a > 1.

Equation (9) shows formula of the risk
factor for a single i-th module modified in
current development project. The formula was
constructed the way that it takes into account
deviation of the number of faults detected in
a given module during software validation, from
the number of faults expected for this module.
It was assumed that as long as there are still
some planned but not executed test cases
that covers functionality provided by a given
module (note that 0 means 0% coverage while
1 means 100% coverage), value of the risk factor
for this module is always higher than zero.
When number of faults detected in a given
module differ from the expected value
determined based on historical data, the risk
factor value is additionally increased,
proportionally to the value of the adequacy
factor. For modules not modified in current
development project, the risk factor is assumed
to be equal zero.

hi(k) = (1 — c1)a | ©9)

27

Radostaw Petka, 4 multifaceted model for software reliability prediction during testing

where:

Cl.(k) — test coverage of the i-th module until

end of k step, ci(k) €[01],i=1,n;
n — number of modules in the system, n € N.

To be able to determine necessary values of
weights of the modules, all the modules shall be
classified based on code complexity and
functional criticality analysis. This way,
appropriate weight value can be given for
particular class of modules. Equation (10)
is used to determine a numerical value reflecting
importance of i-th module from the system
reliability examination point of view.

I; = Z;(1,25 - 0,25F)) , (10)
where:
Z; — complexity of i-th module, Z; € [0,1],
=1,n;
F; — functional criticality of i-th module,
F,€{1,234},i=1n;
n —number of modules in the system, n € N.

Appropriate values of functional criticality
(F;) for all modules are determined by experts
having extensive knowledge about examined
system. The main criterion here is the impact of
a failure in a given module on overall ability
of the system to perform its tasks. The meaning
of particular values used for expression of
the functional criticality is as follows:

1 — high importance module;

2 — normal importance module;
3 — low importance module;

4 — auxiliary module.

Complexity of a given module (Z;)
is determined based on a combination of selected
code complexity metrics. The selected metrics
shall be appropriate for the type of examined
code and shall be characterized by low level of
mutual correlation, to maximize effectiveness of
their use in the decisive process. In this research
the McCabe’s cyclomatic complexity [8]
and data flow complexity metrics were used.
The latter metric is represented by equation (11).
It is inspired by data flow complexity concept
presented by Henry and Kafura [9].

~.

Zl(PD) = (lldl + liZi) . (lddl + lel' + ldpl),
(11)

where:

lid; — number of interfaces incoming to module,

lid; e NU{0},i=1,n;

liz;z — number of interfaces outgoing from
module, liz; € NU{0},i = 1,n;
ldd; — number of data incoming to module,

ldd; e NU{0},i=1,n;

28

ldz; — number of data outgoing from module,
ldz; e NU{0},i=1,n;

ldp; — number of permanent data maintained by
module, ldp; € NU{0},i =1,n;

n — number of modules in the
neN.

Each of the used metrics focuses on
different aspects of software engineering, thus
they characterize complexity of a given module
in a different manner. Due to that it is possible to
achieve relatively better evaluation of the overall
module complexity, compare to situation when
used metrics belong to the same class.
The overall complexity for a given module
is defined as a product of values given by single
metrics. Having the overall complexity
calculated for all the system modules,
all the values are then normalized to range [0, 1].
The results of normalization are then used as
module complexity in equation (10).

When values of the importance factor are
calculated for each of system module, based on
equation (10), the next step is to decide which of
the received values are going to be used as
thresholds for assigning the modules to different
classes. For this reason the received values
are first sorted from lowest to highest. Then, it is
decided how many percent of modules with the
lowest values belongs to the first class and how
many modules with the highest values belongs to
the third class. Value of the importance factor
calculated for a module which is the first one,
according to the determined order, that belongs
to the second class of modules constitutes
the first threshold value. Value of the importance
factor calculated for a module which is the last
one, according to the determined order,
that belongs to the second class of modules
constitutes the second threshold value. If by &4
we denote the first threshold value and by J5
the second threshold value, then appropriate
weight values for modules are determined by
the formula (12).

system,

Twhenl; < &4
2whené; <I; < 6,5 (12)
4whenl; > 85

w; =

where:

i=1,n
n —number of module in the system, n € N.
Form of the reliability evaluation risk factor
that is supposed to be used for the entire system
is finally defined by formula (13). It is defined
as weighted arithmetic mean of the individual
risk factors of system modules.

BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

()= 2)

n
E W
=1 1!

The higher is value of the risk factor (13),
the higher is risk that reliability predictions for
the system under testing are not adequate to its
actual reliability. To calculate value of the risk
factor, data related to the modules modified in
current development project are used. Obtained
value is used in further analysis where, together
with reliability evaluations produced by selected
SRGM, as well as other crucial information
concerning the system under testing, it is used
to determine value of the maturity and readiness
to integration indicator. By integration in this
case it is meant that modules modified in a given
individual development process are merged
with the system being prepared for a customer.

(13)

4. Fault density adequacy factor

Software reliability evaluation produced by
selected SRGM, together with information
provided by the reliability evaluation risk factor,
are based on only part of valuable information
usually available for a decisive person during
software validation process. From the model
completeness perspective as well as to improve
quality of produced outcomes, especially during
early phase of the validation process, it seems to
be reasonable to additionally use data related to
software development process as such, data
being a result of experts opinions and historical
data concerning the system under testing.
In software development process synthesis of
various information that may be valuable from
strategic decisions perspective, especially
decision about delivery of a final product to
a customer, is essential in today’s reality.

Fault density adequacy factor is supposed
to reflect the level of fault density reached at
a given moment in software validation process,
in respect to the fault density requirements
defined by a decisive person. Value of the factor
is determined based on number of faults already
detected in the software at a given moment
in time, together with predicted number of faults
that have been introduced into the system during
code modification. The number of already
detected faults is known at a given moment
in time. The number of faults introduced into
the system is determined by use of a Bayes
net [10]. Structure of the used net is presented
in figure 1.

{ Implementation Solicitude)

{ Team Experience | | { Problem Complexity

{ Number of Introduced Faults)

{_ Produced Code Size)

Fig. 1. Structure of a Bayes net used to evaluate
number of faults introduced into the system

The number of faults introduced into
the system is made dependent on selected
information concerning the software
development process. For a net node which
is not descendant of any other node, according to
the net structure, appropriate value can be
specified by experts working in the development
project which is being examined. Values for
the remaining nodes are determined based on
information provided by nodes which are parent
nodes to a given node, according to the net
structure. Allowed values for such a node
are characterized by suitable probability
distribution. Determined this way expected
number of faults introduced into the system is
used in further analysis.

At a given moment in the software
validation process, the current fault density for
the software under testing can be evaluated
according to formula (14).

G, =5 -2, (14)

where:

s — scale factor; represents number of source
code lines used as a base for defining fault
density requirement;

b, — expected number of faults introduced into
the system;

b,, — number of faults found until end of a given
time step;

L — number of new or modified source code lines
in current development project.

For the purpose of fault density evaluation
an assumption is taken that the software is free
of faults at the moment when development of
new version of system starts. However, it is
possible that during software validation process
some legacy, previously unknown faults
are revealed. That’s why if number of faults
detected until end of a given time step is higher

29

Radostaw Petka, 4 multifaceted model for software reliability prediction during testing

than the expected number of faults then fault
density is assumed to be equal zero.

Having the software fault density evaluated
it is then possible to determine value of the fault
density adequacy factor Ag(k). As a main
reference the value of required fault density
is used which, together with tolerance between
value required and value achieved, is defined by
a decisive person. The fault density adequacy
factor takes values from range [0,1], with step
which equals 0.1. Value 1 in this case means
that achieved fault density is equal or lower
than the required one. Based on the defined
tolerance the subsequent fault density thresholds
are determined. The defined tolerance reflects
a ten percent threshold which, when crossed,
results in value of the fault density adequacy
factor decreased by 0.1, until it reaches 0. If by p
we denote the required fault density and by t
the tolerance between value required and value
achieved, then appropriate value of the fault
density adequacy factor can be determined by
the formula (15). Decided this way value
of the factor is used later to determine value of

the maturity and readiness to integration
indicator.
1 whenGy<p+0-7
09whenGy<p+1-t
0.8whenGy<p+2-7
A1) = ; (15)
0.2whenGy<p+8-7
0.1whenGy<p+9-71

\0 whenGy>p+9-1

5. Maturity and readiness to
integration indicator

Presented model introduces concept of
a maturity and readiness to integration indicator
which is supposed to be used as a guidance for
a decisive person when decisions about
integration of modified software modules with
system that is being prepared for a customer
are taken. Meaning of the indicator is directly
related to development methodology applied for
the system under testing. The way value for
the indicator is determined is characterized by
synthesis of information of different type,
to finally provide a single value appropriate for
a decisive process. In the presented model
the decision that is supposed to be taken during
validation process lies in the fact to agree or not
agree on integration of modified software

30

modules with system that is being prepared for
a customer, based on the defined reliability
objectives. By applying the presented approach
the risk of taking wrong decision, that is decision
to integrate modified modules while the software
under testing has not reached appropriate level
of its reliability, is reduced. It is assumed
that reliability of examined software is a priority
criterion for the decisive person.

The maturity and readiness to integration
indicator expresses, by a percentage value,
the level of fulfilling the requirement for
software reliability defined by a decisive person.
Value of the indicator for a given moment of
software validation process is determined in the
following way. The software reliability objective
defined by a decisive person constitutes a level
which, when reached, means 100% fulfillment
of the requirement. First step is to compare
software reliability evaluated by the selected
SRGM, in case of this research by model Musa-
Okumoto described in chapter 2, with level
defined as the objective, to get preliminary level
of the requirement fulfillment. For instance,
when objective is set to 0.8 and evaluated
reliability is 0.6 then the preliminary level
is 75%. Then, it is assumed that the preliminary
level can be treated as the final one when there
are no symptoms showing that value of
the evaluated software reliability might not be
proper. By the symptoms the counted values of
the reliability evaluation risk factor (13)
and the fault density adequacy factor (15)
are meant. It is assumed that when product

(1-H(k))- 4, (k) equals 1 then the reliability

evaluated by the selected SRGM is the final one
and so the percentage value related to
the evaluated reliability constitutes value of
the maturity and readiness to integration
indicator. Otherwise, that is when the above
product is less than 1, appropriate percentage
value to be used as the maturity and readiness to
integration indicator value is counted by
a proportional reduction in the percentage value
corresponding to the evaluated software
reliability. For instance, when the product gives
0.4 and previously counted preliminary level is
75% then the maturity and readiness to
integration indicator gets value 30%.

6. Cost function

Taking into account economic side of software
development project, in particular costs related
to realization of software validation process
and maintenance of the product on customer
side, the proposed model introduces as well

BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

a cost function (16). The function allows to keep
track of changes concerning overall costs for
the ongoing project, taking into account real data
available at a given moment in software
validation process as well as predicted data
concerning future. The cost aspect introduces
additional limitation imposed on the main plan
aiming to produce software with satisfying level
of reliability but within decided budget.
Therefore, together with quality analysis there is
also cost analysis being performed for system
under testing.

+Cp - (N(k+x)—N(k)), (16)
where:
k — current time (corresponds to end of time
step k);

x — additional time;

N(k) — number of faults detected until end of
time step k;

N (k + x) — predicted number of faults until end
of time k + x;

C(x|k) — predicted overall cost until end
of time k + x;

Cy — cost of single fault removal during software
validation;

Cy — cost of conducting software validation
during a single time step (k);

Cn — cost of single fault removal during
software utilization by a customer.

Naturally, cost of fault removal when fault
is detected by a customer is much higher than
cost that needs to be incurred when fault
removal takes place during software validation.
It is assumed that cost of conducting
the validation process as such is not negligible.
By inclusion of this cost into analysis it is
possible to judge whether to continue
the validation process or not. It might be
important especially in case when the quality
goals have almost been met while budget limits
are already or closely reached. The number of
faults detected until end of time step & is known
at a given moment when cost calculation takes
place. The number of faults detected until
additional time x passes is predicted by
the selected SRGM. In case of this research it is
model Musa-Okumoto described in chapter 2.

7. Reliability characteristics for
software parallel validation

In case of developing a big scale system it is
possible that many small production processes
coexist and are realized, to the large extend,

independently of each other by many
development teams. Form the final product
perspective it is however necessary to be able to
monitor interesting characteristics for the main
production process which aims to create a new
version of the system.

Considering validation process which is
being realized by a team involved in a single
production process, two separable states can be
defined, representing situation in which the
process at a given moment in time can be. The
first used state indicates searching for faults
while the second one indicates fixing faults. This
fact was used to describe a validation process
together with relevant reliability characteristics.
The following assumptions were taken:

e times between consecutive faults detection
are independent random variables with
the same probability distribution,

e faults detection as well as faults fixing
intensity remain constant during examined
time intervals and are the same for all
independent validation processes of
independent production processes; the
intensity values are initially decided by
domain experts, based on development
teams characteristics, planned tasks
characteristics, as well as development
methodology; values of the intensities may
be changed due to new evaluations based on
fault detection and fault fixing information
from the already finished time intervals,

e the number of testing teams is constant,
equals the number of independent
development processes, and each of
the individual validation processes can be in
one of two possible states — searching for
faults or fixing a fault.

In case of individual validation process
a state machine with two states is applied.
Analysis of such process can be based on
stochastic process theory, in particular theory of
Markov process with continuous time and
discrete set of states [11]. It was assumed
that time of being in particular state of
the process is characterized by exponential
probability distribution with known value of
parameter reflecting intensity with which
the process leaves a state. Probability density for
variables which represent time of being in fault
detection state and time of being in fault fixing
state are described by equations (17) and (18)
respectively.

u(t) = e At (17)
where:

A — fault detection intensity in individual

validation process.

31

Radostaw Petka, 4 multifaceted model for software reliability prediction during testing

u(t) = e M (18)
where:
u — fault fixing intensity in individual validation
process.

From the main process perspective at
a given moment in time some of the running
in parallel individual processes are in fault
detection state and some are in fault fixing state.
Based on that fact it is possible to define a set of
states for the main process, where state denoted
as k means that currently & among all of
the individual processes are in fault fixing state,
whereas remaining n-k processes are in fault
detection state. A Markov chain state diagram
for the main process, which is a time-
homogeneous Markov chain with finite state
space, is presented in figure 2.

9

a(')nu
ZA(QD (n—1Nu
(n—(k-l-l))ﬂ(‘ E) (k+ 2)u
(n—Kk)A (‘Q) (k+ Du
(n— (k-)2 (@D K
@
(n—(k—Z))l()(k—l)u

k/
N
=

(n—1A1 (

ole

Fig. 2. Markov chain state diagram for the main
process

A transition intensities between states in
the main process are determined based on
a feature of random variable distribution where
the variable is defined as a minimum of
independent exponentially distributed random
variables. The feature tells that this way defined
random variable 1is also characterized by
exponential distribution with parameter which is

32

a sum of parameters from distributions of
the random variables which are arguments of
the minimum function.

A time to leave a state in the main process
depends only on the current state of the process
and is characterized by exponential distribution
with parameter dependent on the current state.
Probability density for random variable X,
which represents time of being in state k& of
the main process is expressed by equation (19).

ft,k) = (kp + (n = k) e~ kur (=D,

(19)
where:
n — total number of individual processes
constituting the main process;
k — number of individual processes being in fault
fixing state;
(n — k) — number of individual processes being
in fault detection state;
A — intensity of fault detection in individual
validation process;
u — intensity of fault fixing in individual
validation process.

Value of probability of state k to state i/
transition and value of probability of state k& to
state k+/ transition in the main process is
determined based on equations (20) and (21)
respectively.

__ ku

qtk —1lk) = e @0
_ (kA

qk +1lk) = - =57 @)

An unconditional probability of being in
a given state of the main process is determined
based on equation (22) which is a result of
transformation of the Markov chain balance

equation.
()G

Time to find a fault when the main process
is in a given state can be defined as a recursive
relation (23). The equation incorporates value of
time to find a fault for preceding state.

k

p(k) =

(22)

Yo =X +q(k —11k)Y,—1, (23)

where:

Y, — random variable which expresses time to
find a fault while the process is in state k;

X}, — random variable which expresses time of
being in state k;

BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

Y,_1 — random variable which expresses time to
find a fault while the process is in state k£ —1.

Probability distribution for the Y; variable
can be determined by computing a convolution
of probability densities of independent random
variables which are components of the sum in
equation (23). Based on Borel’s convolution
theorem, equation (24) 1is determined by
applying Laplace transform and further
simplifying transformations.

G*(s,k) = M=o F* (s - T2 0 G = 11D,),

(24)
where:
G* () — Laplace transform of probability density
function g(-) which expresses time to find
a fault while the main process is in a given state;
F*(+) — Laplace transform of probability density
function f(+) which expresses time of being in
a given state.

An absolute time to find a fault, irrespective
of a state in which the main process currently
resides, is determined based on equation (25).

Y =Xkoon(k) Yy (25)

By applying Laplace transform for equation
(25) and using equation (24) finally equation
(26) is received.

K*(s) = [Tieo [T¥o F* (s - p(K) -
(26)
K e q(—110),))

The moment generation feature of Laplace
transform or an inverse transform calculation
can be used to get formulas that are used to
determine expected value (27) and variance (28)
of time to find next fault in the main process.

E(Y) = Yk=op(k) -
27)
: Z?:o Hf=j+1 q(i —1]0) - E(X))
V() = Xk=op(k)? -
(28)

Kol aGi— 1102 - V(X))

8. Model verification

Presented in previous chapters approach to
software reliability verification during validation
process was practically applied on data collected
during realization of a real software
development process which aimed to enhance
functional capabilities of a complex, real-time
system. Four independent teams were working
on new version of the system, implementing
separate functionalities. = Therefore, from
the proposed model perspective there were four
individual production processes for which
reliability analysis with use of maturity
and readiness to integration indicator as well as
cost function was performed. Also the method of
determining reliability characteristics for
a software under parallel testing performed by
multiple teams was verified.

To get evaluations for Musa-Okumoto
model parameters, current intensity of faults
and expected number of software faults
in a given time perspective, the SMERFS3
application was used as a tool which has proved
its usefulness in software reliability researches
[12].

Analysis of importance of system modules,
necessary to determine weights of the modules
and then the reliability evaluation risk factor
value, shown that the applied complexity metrics
in combination with functional criticality of
a module are very effective in terms of ability to
project the real situation in the evaluated system.
Among forty seven modules, ten of them got
weight 4, nine of them got weight 1 and the rest
of modules got weight 2. Such a result also
reflects reasonable architecture of the evaluated
system in terms of program structure.

The length of a time step used during
analysis was 24 hours. For each time step values
of used factors were updated based on
information concerning progress and results of
the wvalidation process. Picture 3 presents
waveform of a function reflecting changes of
values of the reliability evaluation risk factor
over all 65 time steps for one of the individual
processes, with two different values of
the constant a from equation (8). Value 1,15
reflects quite low believe of a decisive person
about the significance of deviation between
number of faults expected and number of faults
discovered, while wvalue 1,5 reflects rather
serious believe about such a fact. As can be seen
from the picture, in the latter case the counted
values of H(k) automatically expresses higher
level of uncertainty about the evaluated software
reliability and the wave is less linear due to

33

Radostaw Petka, 4 multifaceted model for software reliability prea

longer period when the risk factor value reduces
slowly.

time step [k]

Fig. 3. Reliability evaluation risk factor
value changes

The Netica application, being a tool which
has proved its usefulness in researches requiring
probability inference [13], was used to create
the Bayes net presented in figure 1, in order to
evaluate number of faults introduced into
the software under testing. To built appropriate
formulas to be used to determine values of
parameters of probability distributions for
the nodes “Produced Code Size” and “Number
of Introduced Faults”, relevant information
from historical projects were used. Having
the expected number of introduced software
faults, the fault density value was updated after
each time step and on this basis value of the fault
density adequacy factor (15) was determined.
Changes of value of the factor over all 65 time
steps for one of the individual processes, called
“process 47, is presented in figure 4.

1

e
i

——process4

fault density adeguacy

time step [k]

Fig. 4. Fault density adequacy factor
value changes

Analysis aiming to compare results of
applying into the decision making process
the reliability evaluations produced by
the selected SRGM and the indications given by
the maturity and readiness to integration
indicator was performed weekly. At the same

34

time already incurs
costs were trackec
changes (16). Use
to integration indic
application of

the circumstances
software reliabilit
criterion used by e
decisions in sof
For one of the a
prolongation of 1
the maturity and 1
reached satisfactor
43% higher numbe
to reduce by that tl
time horizon by alr
the faults that cou
the prolonged peri
can be treated as
from the formu
additional time x is

The method
determination for t
chapter 7, proved
approach.

Figure 5 prese
steps, of values of
a particular sta
The probabilities
formula (22). As
production process
for the main proce:
chapter 7. Necessa
by experts workit
constant along
(n=0,00641). N
determined based «
was a subject
the planned re
(weekly), see table

Tab. 1. Valu
the consecutive reli

Asitc
1S Mo

rom figure &

that none

testing

well as fore
the cost fu
rity and reas
purposefuln
method

vel of acl
dd as a c
:rson to mak
lopment p;
lividual pro
on process
integration
ibled to reve
1 the softwar
st in the pro
was assume
n detected «
alidation p
number of
erspective,

longe.g. ay
tty characte
Icess, presen
of the des:

5, over all 6!
ilities of be

main pr
‘mined base¢
> four indr
re 5 states di
y to principle
p was deter
‘oject and i
idation p
alue of A
tection data
before eac
nalysis se

ar A used for
is weekly ses

sses it
vidual

BIULETYN INSTYTUTU SYSTEMOW INFORMATYCZNYCH 13 25-36 (2014)

processes is in fault fixing state, what is a logical
consequence of elimination of consecutive faults
from the software.

0.9

0.8 //
07
Z s ,-’/ —pi0)
E 0.5 - = pl1)
o
5 0 = pi2]
0.3 - .
0.2 =SS5 — - A3
=
0, EV———— === — P
0
0 20 20 60 0
time step [k]

000

3500 ’

3000 7
T 2500 ,"
'E' 000 .F’ == / — E[Y}
£ 1500 = - = EY}sD{¥)

1000 e 2 ELYHD{]

S00 - £

1]}
o 20 40 &0 80
time step [k]

Fig. 5. Unconditional probability of being in
particular state of the main process
value changes

Figure 6 presents changes, over all 65 time
steps, of value of the time to fault detection
expected value E(Y), determined according to
formula (27), including also value of
the standard deviation D(Y), counted as a square
root of the variance V(Y) determined according
to formula (28). Values of E(X;) and V(X)) used
in formulas (27) and (28) respectively, were
counted based on the fact that random variable

was assumed to be exponentially distributed.
In such case, the expected value is represented
by inverse of the rate parameter and the variance
is represented by inverse of the rate parameter to
the second power. Value of the rate parameter
was a known value. As it was expected time to
find next fault in the main process was
successively longer and longer, reflecting the
fact of continuous reduction of number of faults
in the software.

By comparing received results of the time
to fault detection expected values for
the examined process E(Y), it turned out
that applied method generates results very
similar to approximation performed by model
Musa-Okumoto, what is depicted in figure 7.
Approximation by Musa-Okumoto is described
as “M-O (aprox)”. The real observed times
between consecutive faults detection in the main
process is described as “TBF main process”.

Fig. 6. Time to fault detection expected value in the
main process value changes

Fig. 7. Time between consecutive faults detection in
the main process

9. Summary

Proposed model showed reasonable results of its
practical applicability for the analyzed data set
consisting of test related as well as system
related information. Performed analysis shows
also perspectives for potential improvements of
the proposed approach to software reliability
examination for complex systems. Additional
attention shall be put on the results of
application of the method described in chapter 7.
As well, an attempt to develop more complex
method for determining the maturity and
readiness to integration indicator value is to be
taken. That are the preferred directions for
further researches on the field of software
reliability examination.

35

Radostaw Petka, 4 multifaceted model for software reliability prediction during testing

10. Bibliography

[1] R. Pelka, “Software reliability growth
models”, Biuletyn Instytutu Systemow
Informatycznych, Nr 10, 19-29 (2012).

[2] M.R. Lyu, Handbook of software relia-
bility, IEEE Computer Society Press, 1996.

[3] A.L. Goel, “Software Reliability Models:
Assumptions, Limitations and
Applicability”, IEEE Transactions on
Software Engineering, 12 (1985).

[4] N.E. Fenton, “A Critique of Software
Defect Prediction Models”, IEEE Tran-
sactions on Software Engineering, 5 (1999)

[5] J.D. Musa, K. Okumoto, “A Logarithmic
Poisson Execution Time Model for

[9] S. Henry, D. Kafura, “Software Structure
Metrics Based on Information Flow”, IEEE
Transactions on Software Engineering,
1981.

[10] N. Fenton, M. Neil, The use of Bayes and
causal modeling in decision making,
uncertainty and risk, 2011,

[11] B. Korzan, Procesy stochastyczne i teoria
odnowy, WAT, 1986.

[12] D.R. Wallace, “Practical Software
Reliability Modeling”, Software
Engineering Workshop 200, Proceedings
26 Annual NASA Goddard, NASA Goddard
Space Flight Center, 2001.

[13] W. Cao, J. Ding, H. Wang, “Analysis of
Sequence Flight Delay and Propagation

Software Reliability Measurement™, IEEE, Based on the Bayesian Networks”, Fourth
1984. International Conference on Natural
[6] H.Pham, System Software Reliability, Computation, ICNC 2008.
Springer-Verlag, 2006.
[7] S.H. Khan, Metrics and Models in Software
Quality Engineering, Addison Wesley,
2002.
[8] T.J. McCabe, “A Complexity Measure”,
IEEE Transactions on Software
Engineering, 1976.

Wieloaspektowy model predykcji niezawodnos$ci oprogramowania
W procesie testowania

R. PELKA

Badanie niezawodno$ci oprogramowania stanowi istotna czg$¢ realizacji planu jakosciowego w procesie
produkcji oprogramowania. Poprzez monitorowanie zmian wartosci prognozowanej niezawodnosci
oprogramowania w odniesieniu do zatozonych celow jakosciowych mozna dokonywaé analizy biezacej
sytuacji oraz w razie koniecznosci podejmowac kroki sprzyjajace realizacji zatozonego planu. Wykorzystanie
w celu predykcji niezawodnos$ci jedynie modeli wzrostu niezawodno$ci oprogramowania, bazujacych na
historii wykrywania bledow w badanym oprogramowaniu, wydaje si¢ by¢ podej$ciem zbyt uproszczonym.
Podejscie to w pewnych okolicznosciach realizacji procesu walidacji oprogramowania moze by¢ obarczone
duzym bledem i wplywaé na podejmowanie blednych decyzji przez decydenta. W zwiazku z tym,
w zaproponowanym modelu wykorzystuje si¢ szereg dodatkowych informacji o testowanym oprogramowaniu
oraz samym procesie walidacji w celu uzyskania bardziej wiarygodnych efektow analizy niezawodnosciowe;j,
bedacych jednoczes$nie odpowiednia informacja zwrotna dla decydenta z punktu widzenia zatozonych realiow
prowadzenia projektu programistycznego. Integralna cze$C prezentowanego podej$cia stanowi aspekt
wyznaczania charakterystyk niezawodnosciowych systemu testowanego réwnolegle przez kilka niezaleznych
zespotow.

Stowa kluczowe: niezawodno$¢, oprogramowanie, modelowanie, testowanie.

36

