PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the effect of seasonal changes on sensitive parameters of LAI based Penman–Monteith evapotranspiration model based on particle swarm algorithm

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existing researches for leaf area index (LAI)-based Penman–Monteith evapotranspiration (ET) model (PML) are mostly carried out at yearly scale and the analysis of effects of seasonal change and different underlying surface conditions on model parameters is scarce. This study emphasizes on the influences of seasonal change and diverse land surface conditions on ET by optimizing the sensitive parameters, namely soil evaporation coefficient f and maximum stomatal conductance gsx, with particle swarm algorithm. This analysis is based on the observations of eight flux stations in China. The model performance is reasonable with a best Pearson r of 0.87. The seasonal calibration results indicate parameters change evidently in different seasons and have obvious spatial heterogeneity. The seasonal calibration method has an obvious effect on improving the ET accuracy in spring, which is mostly influenced by regional temperature and relative humidity. This study further demonstrates the need to dynamically adjust model parameters over time with PML model for evapotranspiration simulations, rather than simply setting these parameters to constants depended on subsurface conditions such as land use type.
Czasopismo
Rocznik
Strony
1033--1043
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
  • Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
autor
  • Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
autor
  • Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
autor
  • Water Division and Irrigation Engineering Technology Center, Yellow River Institute of Hydraulic Research, Zhengzhou 450003, China
autor
  • Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
autor
  • School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
Bibliografia
  • 1. Bastiaanssen WGM (1998) A remote sensing surface energy balance algorithm for land (SEBAL) 1. Formulation J Hydrol 212–213:198–212
  • 2. Cleugh HA, Leuning R, Mu Q, Running SW (2007) Regional evaporation estimates from flux tower and MODIS satellite data. Remote Sens Environ 106:285–304
  • 3. Duan H, Lu SH (2021) The influence of canopy interception on evapotranspiration and energy distribution of PML model China Rural Water Hydropower 9:80–84 (in Chinese)
  • 4. Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J et al (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954
  • 5. Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ 18:339–355
  • 6. Leuning R, Zhang YQ, Rajaud A, Cleugh H, Tu K (2008) A simple surface conductance model to estimate regional evaporation using MODIS leaf area index and the Penman–Monteith equation Water Resour Res 44:W10419
  • 7. Li HX, Zhang YQ, Zhang XH, Li XD, Ao TQ (2011) Estimation of regional transpiration and evaporation using Penman-Monteith equation. Eng J Wuhan Univ 44:457–461 (in Chinese)
  • 8. Li F, Cao R, Zhao Y, Mu D, Fu C et al (2015) Remote sensing Penman–Monteith model to estimate catchment evapotranspiration considering the vegetation diversity. Theoret Appl Climatol 127:111–121
  • 9. Li G, Jing YS, Wu YH, Zhang FM (2018) Improvement of two evapotranspiration estimation models using a linear spectral mixture model over a small agricultural watershed. Water 10:474
  • 10. Li S, Wang G, Sun S, Fiifi Tawia Hagan D, Chen T et al (2021) Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J Hydrol 595:126037
  • 11. Liu Y, Yu ET, Yang JJ, Huang WJ (2021) Characteristics of spatial and temporal variation of actual evapotranspiration in the arid region of northwest China from 1960 to 2019. Res Soil Water Conserv 28:75–8089 (in Chinese)
  • 12. Ma ZH (2021) Research on field scale evapotranspiration model Chinese Academy of Sciences, Beijing (in Chinese)
  • 13. McVicar TR, Jupp DLB (2002) Using covariates to spatially interpolate moisture availability in the Murray-Darling Basin, a novel use of remotely sensed data. Remote Sens Environ 79:199–212
  • 14. Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536
  • 15. Panda S, Amatya DM, Jackson R, Sun G, Noormets A (2018) Automated geospatial models of varying complexities for pine forest evapotranspiration estimation with advanced data mining. Water 10:1687
  • 16. Pataki DE, Oren R, Katul G, Sigmon J (1996) Canopy conductance of Pinus taeda, Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions. Tree Physiol 18:307–315
  • 17. Peng SZ, Pang GB, Xu JZ, Zhang ZL (2009) Improvement of stomatal conductance models of rice under water saving irrigation treatment. Trans CSAE 25:19–23 (in Chinese)
  • 18. Peng Z, Manier H, Manier MA (2017) Particle swarm optimization for capacitated location-routing problem. IFAC-PapersOnLine 50:14668–14673
  • 19. Raupach MR (2001) Combination theory and equilibrium evaporation. Q J R Meteorol Soc 127:1149–1181
  • 20. Si JH, Chang ZQ, Su YH, Xi HY, Feng Q (2008) Stomatal conductance characteristic of populous euphratica leaves and response to environmental factors in the extreme arid region. Acta Botan Boreali-Occiden Sin 28:125–130 (in Chinese)
  • 21. Su Z (2002) The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol Earth Syst Sci 6:85–99
  • 22. Sun L, Guan W, Wang YH, Xu LH, Xiong W (2011) Simulation of Larix principis-rupprechtii stand mean canopy stomatal conductance and its responses to environmental factors. Chin J Ecol 30:2122–2128 (in Chinese)
  • 23. Tang FD, Wu YX, Han SJ, Zhang JH (2008) Relationship of stamatal conductance of leaf with environmental factors in broadleaved Korean pine forest at Changbai Mountain. Acta Ecol Sin 28:5649–5655 (in Chinese)
  • 24. Wang HB, Ma MG (2014a) Estimation of transpiration and evaporation for different ecosystems in an inland river basin using remote sensing data and the Penman-Monteith equation. Acta Ecol Sin 34:5617–5626 (in Chinese)
  • 25. Wang HB, Ma MG (2014b) Estimation of transpiration and evaporation of different ecosystems in an inland river basin using remote sensing data and the Penman-Monteith equation. Acta Ecol Sin 34:5617–5626 (in Chinese)
  • 26. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D et al (2002) Energy balance closure at FLUXNET sites. Agric Meteorol 113:223–243
  • 27. Yu GR, Sun XM (2006) Principles and methods for flux observation of terrestrial ecosystems. Higher Education Press, Beijing
  • 28. Yu GR, Fu YL, Sun XM, Wen XF, Zhang LM (2006a) Recent progress and future directions of ChinaFLUX. Sci China Ser D 49(Supp II):1–23
  • 29. Yu GR, Wen XF, Sun XM, Tanner BD, Lee XH et al (2006b) Overview of ChinaFLUX and evaluation of its covariance measurement. Agric Meteorol 137:125–137
  • 30. Yu GR, Zhang LM, Sun XM, Fu YL, Wen XF et al (2008) Environment controls over carbon exchange of three forest ecosystems in eastern China. Glob Change Biol 14:2555–2571
  • 31. Yu GR, Zhu XJ, Fu YL, He HL, Wang QF et al (2012) Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol 19:798–810
  • 32. Zhan XL, Han L, Lai RS (2016) Seasonal variation and spatial distribution characteristics of soil water content in shallow aeolian sandy soil in east of Yellow River in Ningxia. J Arid Land Resour Environ 30:138–144 (in Chinese)
  • 33. Zhang Y, Chiew FHS, Pena-Arancibia J, Sun FB, Li HX et al (2017) Global variation of transpiration and soil evaporation and the role of their major climate drivers. J Geophys Res Atmos 122:6868–6881
  • 34. Zhang YQ, Chiew FHS, Zhang L, Leuning R, Cleugh HA (2008) Estimating catchment evaporation and runoff using MODIS leaf area index and the Penman–Monteith equation Water Resour Res 44:W10420
  • 35. Zhang Y, Leuning R, Hutley LB, Beringer J, McHugh I et al. (2010) Using long-term water balances to parameterize surface conductances and calculate evaporation at 0.05° spatial resolution Water Resour Res 46:W05512
  • 36. Zhang LM, Luo YW, Liu M, Chen Z, Su W et al. (2019) Carbon and water flux observed by the Chinese Flux Observation and Research Network (2003–2005) China Scientific Data 4(1)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88c4701d-f5be-4ce7-9350-31eb24ecd408
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.