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Abstract: This paper studies the output controllability of dis-
crete linear time invariant systems (LTI) with non-negative input
constraints. Some geometrical arguments and positive invariance
concepts are used to derive the necessary and/or sufficient condi-
tions for the positive output controllability of discrete LTI systems.
The paper also provides several academic examples, which support
the theoretical results.
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1. Introduction

Controllability is one of the fundamental concepts in control theory. Studying
controllability is meant to verify if a controller can be applied to generate a
desired state space behavior. The system is said to be controllable if it is
possible to transfer any initial state to any final state using an admissible control
sequence. When the state and input control are not subject to any condition
(i.e. xk ∈ R

n and uk ∈ R
m), Kalman, Ho and Narendra (1962) give an algebraic

criterion to verify if a system is controllable or not.

In many situations, the systems may be subject to constraints, which change
their controllability properties. So, controllability was extended to encompass
many associated concepts, like positive controllability (Saperstone and Yorke,
1971), complete controllability (Shen, Shi and Sun, 2010), asymptotic controlla-
bility (Bacciotti and Mazzi, 2011), controllability of fractional systems (Klamka,
2019), controllability of positive systems (Kaczorek, 2002; Klamka, 1991)... etc.

The purpose of this work is to investigate controllability of discrete linear
time invariant systems under non-negative input constraints. This type of prob-
lems is motivated by engineering systems, appearing in many investigations, like
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antivibration control of pendulum systems (Saperstone and Yorke, 1971), and
non prehensile mechanisms (Lynch and Mason, 1999). In particular, the con-
strained controllability has attracted the attention of several authors. In Evans
and Murthy (1977), necessary and sufficient conditions are proposed for the
positive controllability – controllability of a system with a positive control of
discrete linear time invariant systems. For continuous linear time invariant sys-
tems, the question is studied in Yoshida and Tanaka (2007), Brammer (1972)
and Saperstone and Yorke (1971). For nonlinear systems, Brammer (1972) gives
additional sufficient conditions of positive controllability (PC).

Studying controllability is not restricted as to the states, but also as to the
outputs. In most of the engineering applications, tasks are defined for out-
puts. In fact, having control over the output of the system has a significant
importance, understandably more so than over the states. For example, take
the control of a multilink cable-driven manipulator, where the task is typically
defined in terms of end effector pose rather than the joint positions and veloci-
ties, which can define the system’s state (Lan, Oetomo and Halgamuge, 2013).
Output controllability property of a linear invariant-time system is to verify the
ability of an external input to move the output from any initial condition to any
final condition in a finite time (Chen, 1970; Klamka, 2019). The necessary and
sufficient conditions for output controllability of linear time-invariant systems
are addressed in, for example, Garcia-Planas and Dominguez-Garcia (2013),
Ogata (2010), Kaczorek (2006) and Klamka (2019). When the control is pos-
itive, Eden et al. (2016) proposed the necessary and sufficient conditions for
the positive output controllability of continuous linear time invariant systems
and also an additional sufficient condition to aid in the practical evaluation of
positive output controllability.

In this paper, we study the positive output controllability (POC) of discrete
LTI systems. The necessary and sufficient conditions of positive output con-
trollability are given. Moreover, we state some practical sufficient condition to
establish the positive output controllability.

The structure of the paper is as follows. In the next section, the mathemat-
ical notation regarding the positive matrix is presented. We recall also some
definitions and propositions concerning cone theory and positive invariance. In
Section 3, the problem presentation is provided and we give some definitions,
related to controllability, reachability, positive controllability, output control-
lability... etc. Section 4 introduces the necessary and sufficient conditions for
POC of discrete LTI systems. It also gives additional sufficient conditions,
which are useful in practical evaluation, these conditions are then further ex-
tended to be necessary and sufficient for different cases of systems. Finally, in
Section 5, we illustrate these results with some examples.



Positive output controllability of linear discrete-time invariant systems 523

2. Elementary cone theory and positive invariance

First, we introduce some notations. For n ∈ N, Rn
+ denotes the non-negative

orthant in R
n, and the ith standard basis vector of Rn will be denoted by ei. The

superscript T denotes matrix transposition. The vector v =
[

v1 · · · vn
]T

∈
R

n is said to be positive (non-negative) if for all i = 1, 2, · · · , n, vi > 0 (vi ≥ 0).
For any vectors v, u ∈ R

n, the inner product is denoted 〈v, u〉 = uT v.

Now, we recall some basic definitions concerning the characterization of the
cone set (Luenberger, 1968; Klamka, 2019; Tarbouriech and Castelan, 1993;
Kaczorek, 2011).

Definition 2.1 (Luenberger, 1968; Kaczorek, 2011) A set X ∈ R
n is

said to be a cone if for all x ∈ X and α ≥ 0, αx ∈ X. The set X is a
convex cone if for all x, y ∈ X and α, β ∈ R+, αx+ βy ∈ X.

Definition 2.2 Let G =
[

g1 · · · gm
]

∈ R
n×m, the image (span) of the ma-

trix G is defined as the set

Im(G) := {x ∈ R
n | x =

m
∑

i=1

αigi, αi ∈ R}.

The positive span of the matrix G is defined as the set

span+(G) := {x ∈ R
n | x =

m
∑

i=1

αigi, αi ≥ 0}.

Definition 2.3 (Luenberger, 1968) Let X ⊂ R
n. X− be defined as the

negative polar cone of the set X, is the set of all y ∈ R
n such that 〈y, x〉 ≤ 0,

∀x ∈ X.

Remark 2.1 1. The negative polar cone and the positive span of a matrix
always form convex cones by Definition 2.1.

2. According to Tarbouriech and Castelan (1993), a convex cone X of R
n

can be characterized by a matrix D ∈ R
q×n

X = cone(D) = {x ∈ R
n | Dx ≤ 0}.

�

If the LTI system admits some domains in its state space, from which any
state vector trajectory cannot escape, these domains are called positively invari-
ant sets of the system. The existence and characterization of positively invariant
sets of dynamical systems is therefore a basic issue for many constrained regu-
lation problems. To analyze the desired properties of a closed-loop LTI system
under a linear state feedback, it suffices to study the discrete LTI system given
by:

x(k + 1) = Ax(k), x(0) = x0, (1)
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where A ∈ R
n×n. The solution of the system (1) is given by x(k) = Akx0.

Definition 2.4 A nonempty set X ∈ R
n is a positively invariant set with

respect to system (1) if and only if for any initial state x(0) ∈ X, the trajectory
of the state vector x(k) remains in X (i.e. x(k) ∈ X, ∀k ∈ N).

The set X can be a polyhedron, a vector space or a cone. In the last cases,
the positive invariance is equivalent to the well-known property of A-invariance
of subspaces (Wonham, 1985).

Proposition 2.1 (Tarbouriech and Castelan, 1993) A cone X is posi-
tively invariant with respect to system (1) if and only if AX ⊂ X.

We can deduce that the cone X is positively invariant with respect to system
(1) if and only if AkX ⊂ X, ∀k ∈ N

∗. From Remark 2.1 and Proposition 2.1,
a characterization of positive invariant cone with respect to system (1) is given
as follows (Tarbouriech and Castelan, 1993; Castelan and Hennet, 1993):

Proposition 2.2 X = cone(D) is positively invariant with respect to system
(1), if and only if the following is verified:

Dx(k) ≤ 0 ⇒ Dx(k + 1) ≤ 0, ∀x(k) ∈ X, ∀k ≥ 0. (2)

A very interesting and useful characterization of the positive invariance of a
cone X = cone(D) is the following result from Castelan and Hennet (1993) and
Tarbouriech and Castelan (1993).

Proposition 2.3 Let D ∈ R
q×n, the cone(D) is positively invariant with re-

spect to system (1) if and only if there exists a non-negative matrix H ∈ R
q×q

such that DA = HD.

3. Problem formulation and auxiliary results

This paper is concerned with the following system

x(k + 1) = Ax(k) +Bu(k) (3)

y(k) = Cx(k) (4)

where the state x ∈ R
n, the m dimensional input u ∈ R

m and the p dimen-
sional output y ∈ R

p. The system dynamics is given by A,B and C, which
are matrices with appropriate dimensions. In particular, the paper studies the
positive output controllability of the system (3)-(4). The concept of positive
output controllability will be defined in the sequel.
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3.1. Controllability

The controllability property means that the input may be chosen in order to
drive the state from any initial state x0 to any final state xf . In addition, the
properties of reachability and null controllability are defined in a similar manner
with x0 = 0 and xf = 0 respectively. Formally, controllability, reachability and
null controllability are defined as in Callier and Desoer (1991), Castelan and
Hennet (1993).

Definition 3.1 A discrete LTI system (3) is controllable if for all x0, xf ∈ R
n,

there exists a finite integer N > 0 and an input sequence
(

u(0)u(1) · · · u(N − 1)
)

such that x(0) = x0 and x(N) = xf .

Definition 3.2 A discrete LTI system (3) is reachable if for all xf ∈ R
n, there

exists a finite integer N > 0 and an input sequence
(

u(0) u(1) · · ·u(N − 1)
)

such that x(0) = 0 and x(N) = xf .

Definition 3.3 A discrete LTI system (3) is null controllable if for all x0 ∈ R
n,

there exists a finite integer N > 0 and an input sequence
(

u(0)u(1) · · · u(N − 1)
)

such that x(0) = x0 and x(N) = 0.

Remark 3.1 For discrete LTI systems, the controllability is equivalent to the
reachability and implies the null controllability (see, pp. 288 in Callier and
Desoer, 1991). �

The concept of controllability has been extended to positive controllability,
i.e. controllability subject to the non-negative input constraint u(.) ∈ ∪+

N , where
∪+
N = {u(.) ∈ R

m | u(k) → R
m
+ , k = 0, 1, . . . , N − 1}, where N ≥ 1.

Definition 3.4 A discrete LTI system (3) is positively controllable (PC) if for
all x0, xf ∈ R

n, there exists a finite integer N > 0 and a non-negative input
sequence u(.) ∈ ∪+

N such that x(0) = x0 and x(N) = xf .

Definition 3.5 A discrete LTI system (3) is positively reachable (PR) if for all
xf ∈ R

n, there exists a finite integer N > 0 and a non-negative input sequence
u(.) ∈ ∪+

N such that x0 = 0 and x(N) = xf .

The following property helps us to determine the necessary and sufficient
conditions for positive controllability of the system (3):

Proposition 3.1 A discrete LTI system (3) is PC if and only if it is positively
reachable.

Proof As the necessary condition is obvious, we omit its proof. To show suffi-
ciency, let x0, xf be two vectors of Rn. By the positive reachability, then, for N
sufficiently large there is a non-negative input sequence

(

u(0)u(1) · · · u(N − 1)
)

such that

xf =
N−1
∑

i=0

A(N−1−i)Bu(i).
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And for the final state (−ANx0) there is a non-negative input sequence
(

v(0) v(1) · · · v(N − 1)
)

such that

−ANx0 =

N−1
∑

i=0

A(N−1−i)Bv(i).

By the superposition property of linear systems it can therefore be seen that
the input (u+ v)(.) ∈ ∪+

N and its corresponding trajectory is

x(k) = Akx0 +

k−1
∑

i=0

A(k−1−i)B(u+ v)(i)

= Akx0 +

k−1
∑

i=0

A(k−1−i)Bu(i) +

k−1
∑

i=0

A(k−1−i)Bv(i).

And, we have

x(N) = ANx0 +

N−1
∑

i=0

A(N−1−i)Bu(i) +

N−1
∑

i=0

A(N−1−i)Bv(i)

=
N−1
∑

i=0

A(N−1−i)Bu(i) = xf ,

x(0) = x0.

This completes the proof.

The following proposition gives the necessary and sufficient conditions for
PC of the discrete LTI system (3), and it can be proven by using only well
known and elementary geometric properties of sets of controllability.

Proposition 3.2 The discrete LTI system (3) is PC if and only if there is no
nonzero vector v ∈ R

n such that
〈

v,AkBu
〉

≤ 0, ∀u ≥ 0, ∀k ≥ 0. (5)

Proof Let us recall the positive reachable cone of (3) and its negative polar
cone:

Rs =

{

N−1
∑

i=0

A(N−1−i)Bu(i) : ∀N ≥ 1 and ∀u(.) ∈ ∪+
N

}

,

R−

s =

{

v ∈ R
n :

〈

v,

N−1
∑

i=0

A(N−1−i)Bu(i)

〉

≤ 0, ∀N ≥ 1 and ∀u(.) ∈ ∪+
N

}

.

Let us also define the following set

X =
{

v ∈ R
n :

〈

v,AkBu
〉

≤ 0, ∀u ≥ 0 and ∀k ≥ 0
}

.
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Using Proposition 3.1, the discrete LTI system (3) is PC if and only it is
PR, or, equivalently, that Rs = R

n. Therefore, it will be sufficient to prove that
R−

s = X. It is clear that X ⊂ R−

s . For the inverse inclusion, let v ∈ R−

s , then

N
∑

i=1

〈

v,A(N−i)Bu(i− 1)
〉

≤ 0, ∀u(.) ∈ ∪+
N .

So, by taking a special choice of u(.) ∈ ∪+
N , like

u(0) = u, for i = 0,

u(i) = 0, for i 6= 0,

we then have
〈

v,AN−1Bu
〉

=
〈

v,AkBu
〉

≤ 0, ∀k = N − 1 ≥ 0 and ∀u ≥ 0.

3.2. Output controllability

The output controllability property of system (3) with output (4) is defined as
follows:

Definition 3.6 A discrete LTI system (3)-(4) is output controllable if for all
y0, yf ∈ R

p, there exists a finite integer N > 0 and an input trajectory u(.) ∈ R
m

such that y(0) = y0 and y(N) = yf .

Consistently with Definitions 3.4 - 3.5, positive output controllability and
output reachability are defined as follows

Definition 3.7 A discrete LTI system (3)-(4) is positive output controllable
(POC) if for all y0, yf ∈ R

p, there exists a finite integer N > 0 and a positive
input trajectory u(.) ∈ R

m such that y(0) = y0 and y(N) = yf .

Definition 3.8 A discrete LTI system (3)-(4) is positive output reachable
(POR) if for all yf ∈ R

p, there exists a finite integer N > 0 and a positive
input trajectory u(.) ∈ R

m such that y(0) = 0 and y(N) = yf .

Remark 3.2 Output reachability and output null controllability properties are
analogous to Definitions 3.6 - 3.7, with y0 = 0 and yf = 0, respectively. �

4. The main results

4.1. Necessary and sufficient conditions for POC of discrete LTI sys-

tems

To determine the necessary and sufficient conditions for the positive output
controllability of the system (3) with output (4), the following proposition is
first stated:
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Proposition 4.1 A discrete LTI system (3)-(4) is POC if and only if it is
POR.

Proof The proof is similar to the one of Proposition 3.1, where x0, xf and
x(k) are replaced by y0, yf and y(k) = Cx(k), respectively.

The following theorem gives the necessary and sufficient conditions for POC

of discrete time invariant systems, based on the separating hyperplane theorem
(Luenberger, 1968):

Theorem 4.1 A discrete LTI system is POC if and only if there is no nonzero
vector v ∈ R

p such that

〈

v, CAkBu
〉

≤ 0, ∀u ≥ 0 and ∀k ≥ 0. (6)

Proof The proof is similar to the one of Proposition 3.2, where Rs, R
−

s and
X are replaced by

Ro =

{

N−1
∑

i=0

CA(N−1−i)Bu(i) : ∀N ≥ 1 and ∀u(.) ∈ ∪+
N

}

,

R−

o =

{

v ∈ R
p :

〈

v,

N−1
∑

i=0

CA(N−1−i)Bu(i)

〉

≤ 0, ∀N ≥ 1 and ∀u(.) ∈ ∪+
N

}

and

Y =
{

v ∈ R
p :

〈

v, CAkBu
〉

≤ 0, ∀u ≥ 0 and ∀k ≥ 0
}

,

respectively. Therefore, we omit the details.

Remark 4.1 B = span+(B). Rearranging (6) to the form

〈

(AT )kCT v,Bu
〉

≤ 0.

It can be seen that Theorem 4.1 states that the discrete LTI system (3)-(4)
is POC if and only if there is no vector z0 ∈ Im(CT ) with dynamic systems
described by

z(k + 1) = AT z(k), z(0) = z0 = CT v, (7)

such that z(k) ∈ B
−, ∀k ≥ 0. �

Theorem 4.2 A discrete LTI system is POC if and only if there is no matrix
D ∈ R

q×n such that

(i) DAT = HD where H is a non-negative matrix.
(ii) ∃v ∈ R

q such that DCT v ≤ 0.
(iii) cone(D) ⊂ B

−.
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Proof Assume that there exists a matrixD ∈ R
q×n that satisfies the given con-

ditions. Then, by Proposition 2.3, the first condition implies that the cone(D) is
positive invariant for the dynamics (7). The second condition shows that there
exists z0 ∈ Im(CT ) such that DCT v = Dz0 ≤ 0. Hence, z(k) ∈ cone(D) (see
(2)). The third condition implies that z(k) ∈ B

−, i.e. 〈z(k), Bu〉 ≤ 0, ∀k ≥ 0.
As a result, the discrete LTI system is not POC by Theorem 4.1.

Conversely, assume that the system (3)-(4) is not POC. Then, by the inter-
pretation of Remark 2.1, there is an initial state z0 ∈ Im(CT ) such that z(k),
given by (7), lies in the negative polar cone B

−, ∀k ≥ 0. Let E = {z(k) | z(k) ∈
B
−, ∀k ≥ 0}. It is clear that E is a cone in B

−. Then, for every z0 ∈ E, we
have

〈z0, Bu〉 ≤ 0 =⇒
〈

(AT )kz0, Bu
〉

= 〈z(k), Bu〉 ≤ 0,

where the last inequality is established as z(k) ∈ B
−, ∀k ≥ 0. Therefore, the set

E is a positively invariant cone in B
−. By Proposition 2.3, this means that there

is a matrix D ∈ R
q×n and a non-negative matrix H ∈ R

q×q such that DAT =
HD. The matrix D is exactly the matrix BT (AT )k, i.e. there is z0 = CT v ∈
Im(CT ) such that z(k) ∈ B

−. Consequently, 〈z(k), Bu〉 =
〈

(AT )kz0, Bu
〉

=
〈

BT (AT )kCT v, u
〉

≤ 0. Finally, since u ≥ 0, then BT (AT )kCT v ≤ 0 and there
is v ∈ R

q such that DCT v ≤ 0.

4.2. Sufficient conditions

4.2.1. Sufficient conditions for PC and POC of discrete LTI systems

This section gives sufficient conditions for PC and POC of the discrete LTI

system (3)-(4). The following theorems show the cases where (5) and (6) are
satisfied for every v ∈ R

n and v ∈ R
p, respectively.

Theorem 4.3 The system (3) is PC if for all v ∈ R
n, there is k ≥ 0 and u ≥ 0

such that
〈

v,AkBu
〉

> 0.

Proof Proposition 3.2 shows that the inner product (5) must not be negative
or null. So, if there exists a control input u ≥ 0 such that the inner product (5)
remains non-negative, then the system is PC.

Theorem 4.4 The system (3)-(4) is POC if for all v ∈ R
p there is k ≥ 0 and

u ≥ 0 such that
〈

v, CAkBu
〉

> 0.

Proof Theorem 4.1 shows that the inner product (6) must not be negative or
null. So, if there exists a control input u ≥ 0 such that the inner product (6)
remains non-negative, then the system is POC.

Using Remark 4.1 and Theorem 4.1, the following theorem provides a suffi-
cient condition for the positive output controllability by looking at the behavior
of z(k) as a solution of (7).
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Theorem 4.5 The linear system (3)-(4) is POC if there is no z0 ∈ Im(CT )
such that

〈

z0, A
kBu

〉

≤ 0, ∀k ≥ 0, ∀u ≥ 0. (8)

Proof It is clear from Remark 4.1 by taking z0 = CT v in the inner product
(6).

4.2.2. Necessary and sufficient conditions for PC and POC of dis-

crete LTI systems: case discussion

In this section, we give the necessary and sufficient conditions for the PC and
POC of discrete LTI system (3)-(4), first if the system is single input (i.e.
u ∈ R), secondly, when it is single output (i.e. the vector v ∈ R), and finally
when both of them are not single. These cases are given as follows:

• Case 1: m = 1 and p ≥ 1.
• Case 2: m > 1 and p = 1.
• Case 3: m > 1 and p > 1.

First, we begin with the situation where we have a single input. In this
paragraph the matrix B will be replaced by a vector b ∈ R

n.

Proposition 4.2 A discrete LTI system (3) with a single input control u ∈ R
+

is not PC.

Proof Consider a discrete LTI system (3) such that Akb =
[

f1 · · · fn
]T

,
then ∀v ∈ R

n we have

〈

v,Akbu
〉

=
〈

[

v1 · · · vn
]

,
[

f1 · · · fn
]T

u
〉

= u

n
∑

i=1

vifi, ∀k ≥ 0, ∀u(.) ∈ R
+.

If we take vi = −fi, ∀i = 1 ... n, then

u

n
∑

i=1

vifi = −u

n
∑

i=1

(fi)
2 ≤ 0.

So, by Proposition 3.2, the system (3) is not PC.

Proposition 4.3 A discrete LTI system (3)-(4) with a single input control
u ∈ R

+ is not POC.

Proof Consider a discrete LTI system (3)-(4) such that CAkb =
[

l1 · · · lp
]T

,
then ∀v ∈ R

p we have

〈

v, CAkbu
〉

=
〈

[

v1 · · · vp
]

,
[

l1 · · · lp
]T

u
〉

= u

p
∑

i=1

vili, ∀k ≥ 0, ∀u(.) ∈ R
+.
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If we take vi = −li, ∀i = 1 ... p, then

u

p
∑

i=1

vili = −u

p
∑

i=1

(li)
2 ≤ 0.

So, by Theorem 4.1, the system (3)-(4) is not POC.

Remark 4.2 Proposition 4.2 and Proposition 4.3 show that if m = 1, the LTI

system is not PC neither POC. These results are illustrated in Example 3. �

In the case where we have a single output, the matrix CAkB and the inner
product (6) are as follows

CAkB =
[

f1 f2 · · · fn
]

,

〈

v, CAkBu
〉

= v

m
∑

i=1

fiui.

Proposition 4.4 A discrete LTI system (3)-(4) with m > 1 and p = 1 is
POC if and only if for every v ∈ R, there exist i1, i2 ∈ {1, 2, ...,m} such that
fi1 × fi2 < 0.

Proof Assume that (3)-(4) with m > 1 and p = 1 is POC, then by Theorem
4.1, there is no nonzero v ∈ R such that

〈

v, CAkBu
〉

= v
∑m

i=1 fiui ≤ 0, for
every u ∈ R

m
+ . If the components fi, for all i ∈ {1, 2, ...,m} are all with the

same sign or null, then there is v ∈ R with different sign from fi and for all
u ∈ R

m
+ the inner product

〈

v, CAkBu
〉

≤ 0.

This is not possible, since it is contradictory to what we assumed (i.e. that
(3)-(4) is POC). So, the components fi, for all i ∈ {1, 2, ...,m}, are not all with
the same sign neither null, or at least two components of CAkB have opposed
sign and are not null. In this case, there are many choices of u ∈ R

m
+ for

which
〈

v, CAkBu
〉

> 0. Conversely, if there is i1, i2 ∈ {1, 2, ...,m} such that
fi1 × fi2 < 0, then for every v ∈ R there is u ∈ R

m
+ with ui = 0, for all i 6= i1

and i 6= i2 such that
〈

v, CAkBu
〉

= v(fi1ui1 + fi2ui2) > 0. Then, by Theorem
4.4, the system (3)-(4) is POC.

Remark 4.3 Proposition 4.4 shows that, the components of the matrix CAkB

must not all have the same sign nor null. If it is not the case, then there is v ∈ R

for all u ∈ R
m
+ such that the inner product (6) is negative or null, and then, by

Theorem 4.1, the system is not POC. We illustrate this result in Example 1.�

Finally, in this subsection, sufficient and necessary conditions for PC (with m >

1) and POC (with m > 1 and p > 1) are proposed. First, we need to define
the matrix AkB and the inner product (5) as follows

AkB =







g1,1 · · · g1,m
...

. . .
...

gn,1 · · · gn,m






,
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〈

v,AkBu
〉

=

m
∑

i=1

n
∑

j=1

(vjgj,i)ui.

Proposition 4.5 A discrete LTI system (3) with m > 1 is PC if and only if
for every v ∈ R

n there exists i1 ∈ {1, 2, ...,m} such that
∑n

j=1 vjgj,i1 > 0.

Proof Assume that (3) with m > 1 is PC, then, by Proposition 3.2, there is
no nonzero vector v ∈ R

n for every u ∈ R
m
+ such that

〈

v,AkBu
〉

=

m
∑

i=1

n
∑

j=1

(vjgj,i)ui ≤ 0.

This is not possible if for all i ∈ {1, 2, ...,m},
∑n

j=1 vjgj,i ≤ 0 (for example
vj = −gj,i, ∀i ∈ {1, 2, ...,m}). So, at least there is i1 ∈ {1, 2, ...,m} such
that

∑n

j=1 vjgj,i1 > 0. In this case, there are many choices of u, for which
〈

v,AkBu
〉

> 0. Conversely, if for every v ∈ R
n there is i1 ∈ {1, 2, ...,m} such

that
∑n

j=1 vjgj,i1 > 0, then there is u ∈ R
m
+ with ui = 0, ∀i 6= i1 such that

〈

v,AkBu
〉

=
∑n

j=1 vjgj,i1ui1 > 0, and then by Theorem 4.3 the system (3) is
PC.

We move now to the POC of the discrete LTI system (3)-(4) with m > 1
and p > 1. First, we need to define the matrix CAkB and the inner product
(6) as follows

CAkB =







f1,1 · · · f1,m
...

. . .
...

fp,1 · · · fp,m






,

〈

v, CAkBu
〉

=

m
∑

i=1

p
∑

j=1

(vjfj,i)ui.

Proposition 4.6 A discrete LTI system (3)-(4) with p > 1 and m > 1 is
POC if and only if for every v ∈ R

p there exists i1 ∈ {1, 2, ...,m} such that
∑p

j=1 vjfj,i1 > 0.

Proof The proof is similar to the proof of Proposition 4.5.

An additional sufficient condition for PC and POC is the following one:

Proposition 4.7 A discrete LTI system (3) with m even and non-null is PC

if the following two assertions hold, for all k ∈ N

i) The matrix AkB has only two opposed non-null elements in m
2 rows.

ii) The matrix AkB has only one non-null element in each column.
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Proof Assume that the matrix AkB has only two opposed non-null elements
in each row and only one non-null element in each column. So, the matrix AkB

is exactly like

AkB =
(

αi1ei1 βi1ei1 · · · αim
2

eim
2

βim
2

eim
2

)

,

for all i1, ..., im
2
∈ {1, 2, ..., n} and αij × βij < 0 for all j ∈ {1, 2, ...m2 }, and then

the inner product (5) becomes

〈

v, CAkBu
〉

=

m
2

∑

j=1

vij (αiju(j1) + βiju(j2)).

Since αij × βij < 0 for all j ∈ {1, 2, ...m2 } then whatever the sign of vij there is
u(j1), u(j2) ∈ {u1, u2, ..., um} for all j ∈ {1, 2, ...m2 } such that the inner product
(5) turns positive. Then, by Theorem 4.3, the system (3) is PC.

Proposition 4.8 A discrete LTI system (3)-(4) with m even and non-null and
p > 1 is POC if the following two assertions hold, for all k ∈ N

i) The matrix CAkB has only two opposed non-null elements in m
2 rows.

ii) The matrix CAkB has only one non-null element in each column.

Proof The proof is similar to the proof of Proposition 4.7.

5. Numerical examples

5.1. Example 1

Consider the discrete LTI system (A,B,C) defined by the following matrices:

A =

[

1 2
0 3

]

, B =

[

−1 −3
0 −1

]

and C =
[

c1 c2
]

,

where c1, c2 ∈ R. This system is controllable since rank
[

B AB
]

= 2.

However, it is not PC. Indeed, let us consider the eigenvectors v1 =
[

1 −1
]T

and v2 =
[

0 1
]T

of AT . For all u ≥ 0, we have

〈

v2, A
kBu

〉

=

〈

(

0 1
)

,

[

1 2k

0 3k

] [

−1 −3
0 −1

] [

u1

u2

]〉

=

〈

(

0 1
)

,

[

−u1 + (−3− 2k)u2

−3ku2

]〉

= −3ku2 ≤ 0, ∀k ≥ 1, ∀u ≥ 0.

So, by Proposition 3.2, the system (A,B) is not PC.
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Using Theorem 4.1, this system is POC if

CAkB =
[

c1 c2
]

[

1 2k

0 3k

] [

−1 −3
0 −1

]

=
[

−c1 (−3− 2k)c1 − 3kc2
]

,

is positive spanning (i.e. there is no non-zero v ∈ R for all u ≥ 0 such that
〈

v, CAkBu
〉

≤ 0 ). Since CAkB ∈ R
1×2, ∀v ∈ R and

〈

v, CAkBu
〉

= v(−c1u1 + ((−3− 2k)c1 − 3kc2)u2),

then this is the case if the elements of CAkB contain one positive term and
one negative term. This means that, for all v ∈ R, if −c1((−3−2k)c1−3kc2) < 0,
there is u1, u2 ∈ R+ such that

〈

v, CAkBu
〉

> 0. So, by Theorem 4.4, the system
(A,B,C) is POC.

5.2. Example 2

The studies of the positive output controllability become an alternative issue
if the system is not controllable neither PC. This example illustrates such a
situation.

Consider the discrete LTI system (A,B,C) with multiple input (m = 2) as
follows

A =





1 0 0
0 3 1
0 0 2



 , B =





−1 0
0 3
0 0



 and C =
[

−1 −3 2
]

.

This system is not controllable, since rank[B AB A2B] < 3. The matrices
Ak, AkB and CAkB are given by

Ak =





1 0 0
0 3k β

0 0 2k



 , AkB =





−1 0
0 3k+1

0 0



 and CAkB =
[

1 −3k+2
]

,

where β ∈ R. Taking the eigenvectors of AT as v1 =
[

0 −1 0
]T

, v2 =
[

0 1 0
]T

and v3 =
[

1 0 0
]T

, the inner product (5) is not positive for all
u ≥ 0, because

〈

v1, A
kBu

〉

= −3k+1u1 ≤ 0, ∀k ≥ 0, ∀u ≥ 0.

Then, by Proposition 3.2, the system (A,B) is not PC. The inner product
(6) is given as follows

〈

v, CAkBu
〉

= v(u1 − 3k+2u2), ∀k ≥ 0, ∀u ≥ 0.

For all v ∈ R there is u1, u2 ≥ 0 such that
〈

v, CAkBu
〉

> 0. Then, by
Theorem 4.4, the system (A,B,C) is POC.
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5.3. Example 3

Consider the discrete LTI system (A,B,C) defined by the following matrices:

A =











a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

. . .
. . .

...
0 · · · 0 an,n











, B =











0
...
0
bn











and C =
[

c1 c2 · · · cn
]

,

where ci, ai,j ∈ R, ∀i, j ∈ {1, 2, ... , n}. The matrices Ak, AkB and CAkB are
given by

Ak =











d1,1 d1,2 · · · d1,n
0 d2,2 · · · d2,n
...

. . .
. . .

...
0 · · · 0 dn,n











, AkB =











d1,nbn
d2,nbn

...
dn,nbn











and CAkB = bn

n
∑

i=1

cidi,n,

where di,i = aki,i and di,j ∈ R, ∀i, j ∈ {1, 2, ... , n}. Then, the inner product (5)

becomes ∀v =
[

v1 v2 · · · vn
]

∈ R
n

〈

v,AkBu
〉

= bnu

n
∑

i=1

vidi,n, ∀k ≥ 0, ∀u ≥ 0.

Since u ≥ 0, by Proposition 3.2, the system (A,B,C) is PC if ∀v =
[

v1 v2 · · · vn
]

∈ R
n, and we have

∑n

i=1 vidi,n < 0. This is not the case, so
the system is not PC.

The inner product (6) is given as follows

〈

v, CAkBu
〉

= vbnu

n
∑

i=1

cidi,n.

Since u ≥ 0, by Theorem 4.1, the system (A,B,C) is POC if ∀v ∈ R, so that
we have v

∑n

i=1 cidi,n < 0. But this is not the case, then the system is not POC.

For example, we take the system (A,B,C) as follows:

A =





2 3 4
0 5 2
0 0 4



 , B =





0
0
b3



 and C =
[

c1 c2 c3
]

,

where c1, c2, c3 ∈ R. This system is controllable since rank
[

B AB A2B
]

=
3.

The matrices Ak, AkB and CAkB are given by

Ak =





2k α γ

0 5k β

0 0 4k



 , AkB =





γb3
βb3
4kb3



 and CAkB = (c1γ + c2β + c34
k)b3,
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where α, γ, β ∈ R. Taking the eigenvectors of AT as v1 =
[

1 −1 −1
]T

,

v2 =
[

0 1 2
]T

and v3 =
[

0 0 1
]T

, the inner product (5) is not positive for
all u ≥ 0, because there exists v = −b3v3 ∈ R

3 such that

〈

v,AkBu
〉

= −4kb23u ≤ 0, ∀k ≥ 0, ∀u ≥ 0.

Then, by Proposition 3.2, the system is not PC. The inner product (6) is given
as follows

〈

v, CAkBu
〉

= v(c1γ + c2β + c34
k)b3u, ∀k ≥ 0, ∀u ≥ 0.

Since u ≥ 0, by Theorem 4.4, the system (A,B,C) is POC if ∀v ∈ R, we
have v(c1γ + c2β + c34

k)b3 > 0. If we take v = −(c1γ + c2β + c34
k)b3, then

v(c1γ + c2β + c34
k)b3 = −(c1γ + c2β + c34

k)2b23 < 0. So, by Theorem 4.4, the
system (A,B,C) is not POC.

5.4. Example 4

In this section we are going to illustrate the results of Propositions 4.7 and 4.8.
We take the system (A,B,C) as follows:

A =

















2 0 0 0 0 0
0 1 0 0 0 0
0 0 −2 0 0 0
0 0 0 −3 0 0
0 0 0 0 1 2
0 0 0 0 0 4

















, B =

















2 −1 0 0 0 0
0 0 0 0 0 0
0 0 1 −2 0 0
0 0 0 0 0 0
0 0 0 0 −3 1
0 0 0 0 0 0

















and C =













0 2 0 0 0 0
1 0 0 0 0 0
0 0 0 0 3 0
0 0 −1 0 0 0
0 0 0 0 0 2













.

The matrices Ak and AkB are given by

Ak =

















2k 0 0 0 0 0
0 1k 0 0 0 0
0 0 (−2)k 0 0 0
0 0 0 (−3)k 0 0
0 0 0 0 1k β

0 0 0 0 0 4k
















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and AkB =

















2k+1 −2k 0 0 0 0
0 0 0 0 0 0
0 0 2k −2k+1 0 0
0 0 0 0 0 0
0 0 0 0 −3 1
0 0 0 0 0 0

















,

where β ∈ R. The inner product (5) becomes

〈

v,AkBu
〉

= v1(2
k+1u1 − 2ku2) + v3(2

ku3 − 2k+1u4) + v5(−3u5 + u6),

then for all vT ∈ R
5 and k ≥ 0 there is u ∈ R

6
+ such that

〈

v,AkBu
〉

> 0. So,
by Theorem 4.3, the system (A,B) is PC. As we note that the matrix AkB

has only two opposed non-null elements in m
2 = 3 rows and only one non-null

element in each column, then, by Proposition 4.7, the system (A, B) is PC.

Now, let the matrix CAkB ∈ R
5×6 be as follows

CAkB =













0 0 0 0 0 0
2k+1 −2k 0 0 0 0
0 0 0 0 −6 3
0 0 −2k 2k+1 0 0
0 0 0 0 0 0













.

The inner product (6) becomes

〈

v, CAkBu
〉

= v2(2
k+1u1 − 2ku2) + v3(−6u5 + 3u6) + v4(−2ku3 + 2k+1u4),

then for all vT ∈ R
5 and k ≥ 0, there is u ∈ R

6
+ such that

〈

v, CAkBu
〉

> 0.
So, by Theorem 4.4, the system (A,B,C) is POC. As we note that the matrix
CAkB has only two opposed non-null elements in m

2 = 3 rows and only one
element in each column, then, by Proposition 4.8 the system (A, B, C) is POC.

6. Conclusion

Based on the evaluation of the geometric properties of the system, necessary
and sufficient conditions for the positive output controllability of discrete LTI

systems have been established. These conditions were then applied to numerical
examples to illustrate their usefulness. The investigation of positive output
controllability can be considered as an interesting alternative when the system
is not controllable neither positive controllable, as seen in Example 2. The
subject of the further research will be to develop this work, and to extend it for
discrete-time non-linear systems, and then for internally and externally positive
discrete linear systems. POC of switched discrete LTI systems is also an open
problem and definitely worth of attention.
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