Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
SPOT-GPR (release 1.0) is a new freeware tool implementing an innovative Sub-Array Processing method, for the analysis of Ground-Penetrating Radar (GPR) data with the main purposes of detecting and localizing targets. The software is implemented in Matlab, it has a graphical user interface and a short manual. This work is the outcome of a series of three Short-Term Scientific Missions (STSMs) funded by European COoperation in Science and Technology (COST) and carried out in the framework of the COST Action TU1208 “Civil Engineering Applications of Ground Penetrating Radar” (www.GPRadar.eu). The input of the software is a GPR radargram (B-scan). The radargram is partitioned in subradargrams, composed of a few traces (A-scans) each. The multi-frequency information enclosed in each trace is exploited and a set of dominant Directions of Arrival (DoA) of the electromagnetic field is calculated for each sub-radargram. The estimated angles are triangulated, obtaining a pattern of crossings that are condensed around target locations. Such pattern is filtered, in order to remove a noisy background of unwanted crossings, and is then processed by applying a statistical procedure. Finally, the targets are detected and their positions are predicted. For DoA estimation, the MUltiple SIgnal Classification (MUSIC) algorithm is employed, in combination with the matched filter technique. To the best of our knowledge, this is the first time the matched filter technique is used for the processing of GPR data. The software has been tested on GPR synthetic radargrams, calculated by using the finite-difference time-domain simulator gprMax, with very good results.
Rocznik
Tom
Strony
43--54
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Airbus Defence and Space GmbH, a Claude-Dornier-Straße, 88090 Immenstaad am Bodensee, Germany
autor
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
Bibliografia
- [1] A. Benedetto and L. Pajewski, Eds., Civil Engineering Applications of Ground Penetrating Radar. Book Series: “Springer Transactions in Civil and Environmental Engineering”. Springer International Publishing Switzerland, 2015.
- [2] R. Persico, Introduction to Ground Penetrating Radar: Inverse Scattering and Data Processing. Hoboken, NJ, USA Wiley, 2014.
- [3] L. Mertens, R. Persico, L. Matera, and S. Lambot, “Automated detection of reflection hyperbolas in complex GPR images with no a priori knowledge on the medium”, IEEE Trans. of Geosci. and Remote Sensing, vol. 54, no. 1, pp. 580–596, 2016 (doi: 10.1109/TGRS.2015.2462727).
- [4] F. Sagnard, C. Norgeot, X. Derobert, V. Baltazart, E. Merliot, F. Derkx, and B. Lebental, “Utility detection and positioning on the urban site Sense-City using Ground-Penetrating Radar systems”, Measurement, vol. 88, pp. 318–330, 2016 (doi: 10.1016/j.measurement.2016.03.044).
- [5] A. Ristić, Ž. Bugarinović, M. Govedarica, L. Pajewski, and X. Derobert, “Verification of algorithm for point extraction from hyperbolic reflections in GPR data”, in Proc. 9th Int. Worksh. on Adv. Ground Penetrat. Radar IWAGPR 2017, Nantes, France, 2017, pp. 1–5 (doi: 10.1109/IWAGPR.2017.7996109).
- [6] A. Ristić, M. Vrtunski, M. Govedarica, L. Pajewski, and X. Derobert, “Automated data extraction from synthetic and real radargrams of district heating pipelines”, in Proc. 9th Int. Worksh. on Adv. Ground Penetrat. Radar IWAGPR 2017, Nantes, France, 2017, pp. 1–5 (doi: 10.1109/IWAGPR.2017.7996046).
- [7] L. Pajewski, A. Benedetto, X. Derobert, A. Giannopoulos, A. Loizos, G. Manacorda, M. Marciniak, C. Plati, G. Schettini, and I. Trinks, “Applications of Ground Penetrating Radar in civil engineering – COST Action TU1208”, in Proc. 7th Int. Worksh. on Adv. Ground Penetrat. Radar IWAGPR 2013, Nantes, France, 2013, pp. 1–6 (doi: 0.1109/IWAGPR.2013.6601528).
- [8] S. Meschino and L. Pajewski, “Application of a SAP-DoA Method to GPR data, for the Localisation of Scatterers in Concrete”, in Short Term Scientific Missions – Year 2, COST Action TU1208, L. Pajewski, M. Marciniak, S. Lambot, Eds. Aracne Editrice, Rome, Italy, 2015 [Online]. Available: www.GPRadar.eu
- [9] S. Meschino and L. Pajewski, “Application of a SAP-DoA method to GPR data for the location of reinforcing elements in concrete”, in Proc. IEEE 15th Mediterranean Microwave Symp MMS 2015, Lecce, Italy, 2015, pp. 1–4 (doi: 10.1109/MMS.2015.7375408).
- [10] S. Meschino and L. Pajewski, “A study of the accuracy of the SAPDoA location technique applied to GPR data and comparison with the standard hyperbola approach”, in Short Term Scientific Missions – Year 3. Aracne Editrice, Rome, Italy, 2017.
- [11] L. Pajewski, A. Giannopoulos, S. Lambot, M. Marciniak, S. Meschino, N. Pinel, M. Sbartai, and C. Warren, “Short-term scientific missions on electromagnetic modelling and inversion techniques for ground penetrating radar – COST Action TU1208”, in Proc. 10th IEEE Eur. Conf. on Antennas and Propag. EuCAP 2016, Davos, Switzerland, 2016 (doi: 10.1109/EuCAP.2016.7482011).
- [12] S. Meschino, L. Pajewski, and M. Marciniak, “Development of SAP-DoA techniques for GPR data processing within COST Action TU1208”, Geophysical Research Abstracts, European Geosciences Union (EGU) General Assembly 2016, 17-22 April 2016, Vienna, Austria, article ID EGU2016-12565.
- [13] S. Meschino and L. Pajewski, “Finalization of a freeware dataprocessing tool implementing the SAP-DoA technique”, in Short Term Scientific Missions – Year 4. Aracne Editrice, Rome, Italy, 2017.
- [14] L. Pajewski, A. Giannopoulos, M. Marciniak, S. Meschino, A. Popov, I. Prokopovich, A. Ventura, and C. Warren, “Short-Term Scientific Missions on forward and inverse electromagnetic-scattering techniques for Ground Penetrating Radar”, in Proc. Int. Applied Comput. Electromag. Society Symp. ACES 2017, Florence, Italy, 2017.
- [15] B. Gross, Smart Antennas for Wireless Communications. New York, NY: McGraw-Hill, 2005.
- [16] S. Chandran, Advances in Direction-of-Arrival Estimation. Norwood, MA: Artech House, 2005.
- [17] R. Kumaresan and D. W. Tufts, “Estimating the angles of arrival of multiple plane waves”, IEEE Trans. on Aerosp. and Electron. Syst., vol. 19, no. 1, pp. 13–139, 1983.
- [18] R. Roy and T. Kailath, “ESPRIT-estimation of signal parameters via rotational invariance techniques”, IEEE Trans. on Acoust., Speech, and Sig. Process., vol. 37, no. 7, pp. 984–995, 1989.
- [19] S. Meschino, L. Pajewski, and G. Schettini, “Use of a sub-array statistical approach for the detection of a buried object”, Near Surface Geophys., vol. 8, no. 5, pp. 365–375, 2010 (doi: 10.3997/1873-0604.2010031).
- [20] S. Meschino, L. Pajewski, and G. Schettini, “A direction-of-arrival approach for the subsurface localization of a dielectric object”, J. of Appl. Geophys., vol. 85, pp. 68–79, 2012 (doi: 10.1016/j.jappgeo.2012.07.002).
- [21] S. Meschino, L. Pajewski, M. Pastorino, A. Randazzo, and G. Schettini, “Detection of subsurface metallic utilities by means of a SAP technique: Comparing MUSIC- and SVM-based approaches”, J. of Applied Geophys., vol. 97, pp. 60–68, 2013 (doi: 10.1016/j.jappgeo.2013.01.011).
- [22] S. Meschino, L. Pajewski, and G. Schettini, “A SAP-DOA method for the localization of two buried objects”, Int. J. on Antenn. and Propag., vol. 2013, Article ID 702176, 2013 (doi: 10.1155/2013/702176).
- [23] C. E. Cook and M. Bernfeld, Radar Signals: An Introduction to Theory and Application, 1st ed. Artech House Radar Library, 1993.
- [24] C. Warren, A. Giannopoulos, and I. Giannakis, “gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar”, Computer Phys. Commun., vol. 209, pp. 163–170, 2016 (doi: 10.1016/j.cpc.2016.08.020).
- [25] L. Pajewski and A. Giannopoulos, “Electromagnetic modelling of Ground Penetrating Radar responses to complex targets”, in Short Term Scientific Missions and Training Schools – Year 1, COST Action TU1208, L. Pajewski and M. Marciniak, Eds. Aracne Editrice, Rome, Italy [Online]. Available: www.GPRadar.eu
- [26] Bello. Y. Idi and Md. N. Kamarudin, “Utility mapping with Ground Penetrating Radar: an innovative approach”, J. of American Sci., vol. 7, no. 1, pp. 644–649, 2011.
- [27] M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by a finite set of perfectly conducting cylinders buried in a dielectric half-space: a spectral-domain solution”, IEEE Trans. on Antenn. and Propag., vol. 53, no. 2, pp. 719–727, 2005 (doi: 10.1109/TAP.2004.841315).
- [28] M. Di Vico, F. Frezza, L. Pajewski, and G. Schettini, “Scattering by buried dielectric cylindrical structures”, Radio Science, vol. 40, no. 6, RS6S18, 2005 (doi: 10.1029/2004RS003182).
- [29] A. Giannopoulos, “Modelling ground penetrating radar by GprMax”, Construction and Build. Mater., vol. 19, pp. 755–762, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-88bbc18c-7e3f-473f-9eef-2fc3e69918d5